A New Therapeutic Strategy for Cardiovascular Diseases Utilizing Exosomes 

A New Therapeutic Strategy for Cardiovascular Diseases Utilizing Exosomes 

Cardiovascular diseases continue to be the leading cause of death globally, accounting for nearly 18 million deaths each year with heart attack and stroke accounting for 80% of deaths.

Recently, stem-cell-based therapy has demonstrated the potential to regenerate damaged myocardium and to treat a wide range of cardiovascular diseases (CVDs). Specifically, the ability of mesenchymal stem cells (MSCs) to differentiate into cardiomyocytes, endothelial cells, and vascular smooth muscle cells has created a potentially new and promising therapeutic approach for the treatment of CVDs.

Huang et al. summarize the recent advances in MSC therapy, including the role of exosomes in future treatments of CVDs. 

Recent studies have demonstrated that MSCs were able to secret cholesterol-rich, phospholipid exomes that were enriched with microRNAs (miRNAs). These exomes are nano-sized particles originating from multivesicular endosomal ranging in size from 30 – 100 nm and contain cytokines, proteins, lipids, mRNAs, and miRNAs. These exosomes are suggested as central mediators of intercellular communication and transfer proteins, mRNAs and miRNAs to adjacent cells.  

The miRNAs found in exosomes play an essential role in various physiological and pathological processes by regulating gene expression at the post-transcription level. When applied in the cardiovascular system, miRNAs are internalized into CMCs and ECs and result in cardiomyocyte protection and angiogenesis promotion that has demonstrated beneficial and anti-inflammatory effects including cardiac regeneration, neovascularization, and anti-vascular remodeling; these observed benefits include improved cardiac function after a myocardial infarction (MI), reduced inflammation related to pulmonary hypertension, and increased tissue healing following an ischemia-reperfusion injury.

Huang et al. conclude that the studies evaluated in this review provide evidence that MSC-derived exosomes play an essential role in MSC-based therapy of CVDs including MI, reperfusion injury, and PH. Considering these conclusions, the authors call for additional studies to determine the detailed mechanisms and underlying benefits to determine their exact role. 

Source: “Exosomes in Mesenchymal Stem Cells, a New Therapeutic Strategy ….” 12 Jan. 2015, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4308409/.

Regenerative Medicine and Rehabilitation Therapies for Ischemic Stroke

Regenerative Medicine and Rehabilitation Therapies for Ischemic Stroke

Recent advances in medical accessibility, technology, and treatment have increased the average human life expectancy, while at the same time, increasing the risk for neurodegenerative diseases and other disorders – including stroke.

According to the CDC, nearly 800,000 people in the United States suffer a stroke each year, with 87% of these strokes being ischemic strokes. An ischemic stroke is a medical emergency that occurs when the blood supply to part of the brain is reduced or interrupted. Without the ability to deliver oxygen or nutrients, brain cells begin to die in a matter of minutes.

Even when identified and treated early, the lasting, long-term effects associated with stroke result in economic and social costs for patients, their families, and society in general. As an example, the CDC estimates that stroke-related costs, including those associated with healthcare and missed days of work, exceed $50 billion dollars in the U.S. each year.

While medical research continues to search for ways to prevent stroke by addressing underlying causes, primary stroke treatment continues to focus on managing stroke progression while also treating related symptoms. 

Recently regenerative medicine, also known as stem cell therapy, along with rehabilitation therapy has been presented as an effective stroke treatment. In this review, Berlet, et al. explore the potential synergistic outcomes of stroke treatment observed when combining current advances in stem cell research with known stroke rehabilitation strategies. The authors also review research while considering the advantages and disadvantages of using the combination of stem cell transplantation and rehabilitation as a way to mitigate the devastating effects of stroke. 

Combining stem cell treatment with rehabilitation therapy and outside strategies, such as an enriched environment (EE) may enhance functional stroke recovery and allow for an ideal long-term therapy for stroke patients. With the goal of enhanced brain plasticity, these therapies aim to introduce intrinsic or extrinsic stimuli to assist with the reorganization of the brain’s structure, functions, and connections. 

The human brain has been demonstrated to be more plastic after experiencing an injury. With EE promoting improved stem cell survival and migration, and stem cell therapy creating the potential for an extended window of treatment, the combination is viewed as a potentially effective therapy when combined. 

Preclinical experimentation has demonstrated stem cell therapies to be effective days after an ischemic stroke occurs, providing a very important window of time for critical stroke treatment to occur. While this is certainly promising information, the authors also point out that there has been a disappointing and frustrating disconnect between these preclinical findings and what is observed in clinical experimentation.

Considering this, the authors identify determining the optimal clinical stem cell route of administration, dosage, and timing as key areas of study to better understand – and maximize – the therapeutic potential of stem cells in the treatment of ischemic stroke. 

While Berlet et al. calls for additional research into the ideal route of stem cell administration, type dosage, and timing to further confirm the efficacy of stem cell transplantation for the treatment of ischemic stroke, the authors conclude that the addition of stem cell therapy to rehabilitation has significant potential to create a conducive host microenvironment to facilitate the repair process.


Source: “Combination of Stem Cells and Rehabilitation Therapies for … – NCBI.” 6 Sep. 2021, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8468342/.

Regenerative Medicine as an Option for Chronic Obstructive Pulmonary Disease

Regenerative Medicine as an Option for Chronic Obstructive Pulmonary Disease

Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory lung disease that causes obstructed airflow from the lungs. Affecting an estimated 15 million people in the United States alone, COPD is characterized by progressively worsening symptoms, including breathing difficulty, cough, mucus (sputum) production, and wheezing, and is most often the result of prolonged exposure to cigarette smoke.

Not just an issue for those in the U.S., COPD has been demonstrated to be a preventable and treatable global health challenge. With an estimated 3.5 million worldwide deaths attributed to COPD each year, the disease is currently the third leading cause of death.

While there have been medical advances in the treatment of COPD, these therapies focus primarily on symptomatic relief and not the reversal of lung function deterioration or improvement in patients’ quality of life.

Since stem cells are known to differentiate into a wide variety of cell types and have been previously used to regenerate lung parenchyma and airway structure, they are believed to be an evolving and promising therapeutic treatment option for those with COPD.

Supported by extensive studies exploring the mechanism of stem cells in the regulation of COPD, experts have demonstrated that stem cells possess multidirectional differentiation potential and are able to differentiate into specific forms of alveolar epithelial cells (type I and/or type II) and participate into the repair of lung tissue structure.

In this review, Chen et al. summarize the most relevant findings of eight clinical trials that explore the treatment of COPD with mesenchymal stem cells (MSCs)

These clinical trials, conducted between the years of 2009 – 2020, examined using different modes and doses of a variety of autologous or allogeneic MSCs, including bone marrow-derived stem cells (BM-MSCs), adipose tissue-derived stem cells (AD-MSCs), and umbilical cord-derived stem cells (UC-MSCs), in the treatment of COPD.

Examining the different types of MSCs used for these clinical trials, the authors conclude that while all types of MSCs have benefits in this application, AD-MSCs and UC-MSCs are very promising, primarily because the source is easily available; additionally, the process of collecting UC-MSCs is non-invasive. Looking at trends in recent clinical trials, the authors find a general increase in the shift toward using AD-MSCS and UC-MSCs and away from BM-MSCs, primarily for the reasons mentioned previously.

Analyzing results of these clinical trials related to mode, schedule, and dosage of administration, the authors found that stem cells administered intravenously into the body concentrated in the lungs for thirty minutes before gradually migrating to the liver; the inability of stem cells to keep stem cells in the lungs for a longer period of time was noted as a potential barrier that could limit the effectiveness of stem cell therapy for this condition.  

To address this concern, the authors recommend adjusting the schedule and/or mode of administration, indicating that prior research suggests multiple doses and administration via airway injection using a bronchoscope is a good way to deliver stem cells directly to the lungs. 

Chen et al. found that regardless of what type of MSCs and what mode of administration was used, stem cell therapy for the management of COPD has been proven to be safe and without evidence of any adverse events. However, only 2 of the eight clinical trials evaluated for this review demonstrated that MSCs could improve pulmonary function. The results of the other six indicated that MSCs had no effect on pulmonary function. 

Considering these findings, and in view of the small number of patients in the two clinical trials demonstrating therapeutic improvement on pulmonary function, the authors call for further research to better understand the effects of MSCs on improvements of pulmonary function.  

In closing, Chen et al. indicate that stem cell therapy may have a significant role in the future treatment of COPD and other respiratory diseases and offer a number of suggestions for future clinical trials. The recommendations provided by the authors for future clinical trials examining the therapeutic effects of MSCs when treating COPD include expanding the sample size, extending the follow-up time to a minimum of 2 years, selecting patients with different grades of COPD, considering using AD-MSCs and UC-MSCs (rather than BM-MSCs); and further exploring the effects of MSC on change in other inflammatory, immune, and metabolic indicators.  


Source: “Stem cell therapy for chronic obstructive pulmonary disease – PMC.” 15 Jun. 2021, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8280064/.

Role of Mesenchymal Stem Cells in Osteoarthritis Treatment

Role of Mesenchymal Stem Cells in Osteoarthritis Treatment

Osteoarthritis (OA) is the most common form of arthritis and is estimated to affect over 500 million people worldwide.  A result of the progressive deterioration of the protective cartilage that cushions the ends of the bones, OA most commonly affects the hands, knees, hips, and spine and is characterized by pain, stiffness, and loss of mobility in and around the affected areas.

Without a known way to treat and/or prevent OA from occurring, current conventional treatment of the condition typically involves a combination of prescription and OTC drugs, physical therapy, and lifestyle adjustments in an effort to treat and slow the progression of the symptoms associated with OA.

As the beneficial applications of stem cells continue to emerge, and considering their ability to replace and repair cells and tissues throughout the body, researchers believe that they can be used to treat joint disorders, including OA. The majority of the current stem cell therapies being investigated for use in treating OA use mesenchymal stem cells (MSCs), primarily due to their multilineage differentiation towards cell types in the joints and for their immunoregulatory functions. 

In this review, Kong et al. provide detailed information on OA and MSCs, share updated information on pre-clinical and clinical trials and related applications of MSCs, and discuss additional efforts on cell-based therapy for treating OA and other joint and bone diseases.

Several preclinical models have investigated MSCs in treating OA and have demonstrated success in generating cartilage from MSCs. In addition, several animal models have demonstrated the beneficial effect of MSCs on cartilage, including protecting existing cartilage, repairing defects of joint cartilage, regenerating and enhancing cartilage, and even preventing OA.  

Additionally, there have been several animal models evaluating the effects of intra-articular injection of MSCs for treating OA with researchers noting marked regeneration of tissue and decreased degeneration of articular cartilage.  

Clinical trials using MSCs to treat human joint cartilage defects have found that MSCs could be used to repair cartilage defects, improve joint function, reduce pain, and have demonstrated the potential to use MSC therapy for cartilage repair and regeneration as a way to reduce signs and symptom commonly associated with OA.

Although these studies have demonstrated the tremendous potential associated with the use of MSCs for treating OA, they have also highlighted some potential concerns associated with MSC-based therapy. These concerns include determining the specific number and type of MSCs best suited for treating OA, a better understanding of the timing and delivery strategies for the administration of MSCs, and identifying the stages of disease best suited for MSC therapy.  

Further concerns highlighted by the authors include the potential of genetic influences when using autologous MSC cells for treatment, the potential for the overall quality of MSC cells used in older patients to be too low, and the overall safety of stem cell therapy as a therapeutic treatment option for OA. 

Despite the concerns identified above, Kong et al. conclude that the advancement of regenerative medicine and innovative stem cell technology offers a unique and exciting opportunity to treat OA.  


Source: “Role of mesenchymal stem cells in osteoarthritis treatment – NCBI.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5822967/.

Regenerative Medicine for Managing Neuroinflammation in Neuropathic Pain

Regenerative Medicine for Managing Neuroinflammation in Neuropathic Pain

Neuropathic pain (NP) is a complex, wide-ranging, and often debilitating condition that contributes to chronic pain. Caused by a number of different factors and contributors, the condition most commonly involves disease, chronic condition, or injury to the nervous system.  

Defined by the International Association for the Study of Pain (IASP) as pain that occurs as a direct consequence of a lesion or disease affecting the somatosensory system, NP is responsible for 20 to 25% of patients who experience chronic pain and is estimated to affect 8% of the population. 

While there have been significant improvements in pharmacological and nonpharmacological treatment for NP, these practices only provide consistent and lasting pain relief to a small percentage of patients. Recently regenerative medicine, also known as stem cell therapy, is being explored as a safe and effective NP therapy option.

In this review, Joshi et al. explore the possibilities of using stem cells in NP patients and discuss the relevant challenges associated with their uses in this application.

After identifying and defining the nine most common conditions associated with chronic, persistent, or recurring NP, the authors begin this review by pointing out that NP, to date, has been poorly recognized, poorly diagnosed, and poorly treated. A review of relevant literature has also demonstrated that the treatment of NP has consistently been a significant challenge for physicians, with most attempting to manage NP by targeting clinical symptoms rather than causative factors.  

Most often, pharmacological treatment approaches for managing NP have included a variety of first-line drugs (tricyclic antidepressants, serotonin-norepinephrine reuptake inhibitors, and gabapentinoids) and opioid analgesics (tramadol) as second-line drugs. Third-line pharmacological NP treatment includes stronger opioids, such as morphine and oxycodone. Nonpharmacological NP treatment options for drug-refractory NP include interventional therapies (peripheral nerve blockade and epidural steroid injection), physical therapies (massage and ultrasound), and psychological therapies (cognitive behavioral therapy). 

Long believed to arise from neurons, recent studies have demonstrated the important role of immune system response in the development of NP. Specifically, immune cells were found not only to be the source of pain mediators but also to produce analgesic molecules. These findings led researchers to believe that neutrophils and macrophages could each have a major role in early NP development.  

Research has indicated that nerve injuries trigger an organized series of events to mount an inflammatory response. As part of this response to injury, pain following nerve damage has been shown to be mitigated by cytotoxic natural killer cells that selectively clear out partially damaged nerves. Additionally, this research has increasingly demonstrated that the immune system interacts with the sensory nervous system, contributing to persistent pain states. 

Pharmacological and nonpharmacological treatment approaches have only produced temporary pain relief in patients with NP. Recently, stem cell transplantation has demonstrated significant potential for repairing nerve damage in NP and has emerged as a potential alternative therapeutic treatment approach. While the exact mechanism underlying stem cell-mediated pain relief remains unclear, specific stem cells (human mesenchymal stem cells, or hMSCs) have demonstrated the potential to provide trophic factors to the injured nerve as well as the ability to replace injured or lost neural cells.

While stem cell-based therapies have been shown to protect against neurodegeneration and promote neuroregeneration, the authors point out several issues that need to be addressed. These outstanding issues include identifying the optimal dosing for stem cell transplantation in the treatment of NP, sourcing of stem cells, considerations of autologous versus allogeneic transplants, precommitment to neuronal lineage, and specific dosing requirements. 

Joshi et al. conclude that while NP is a chronic heterogeneous condition of the sensory nervous system with no current curative treatment, stem cells present exciting therapeutic prospects for NP. While further research to understand the exact mechanism underlying stem cell-mediated pain relief is required, current literature provides evidence of the potential of stem cells in slowing the degeneration process while promoting the survival and recovery of damaged nerves. 


Source: Stem Cell Therapy for Modulating Neuroinflammation in … – NCBI.” 3 May. 2021, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8124149/.

What Does Stem Cell Therapy Cost in 2023?

What Does Stem Cell Therapy Cost in 2023?

Stem cell therapy is a type of regenerative medicine that involves using stem cells to promote the repair, regeneration, or replacement of damaged or diseased cells, tissues, or organs in the body. Stem cells are undifferentiated cells that have the ability to develop into many different types of cells, such as muscle, bone, or cartilage cells, depending on the signals they receive in the body. In this article, we will discuss everything stem cell therapy including, the Stem Cell Therapy cost in 2023!

Mesenchymal stem cells (MSCs) are a type of adult stem cell that can be found in various tissues in the body, including bone marrow, adipose tissue (fat), and umbilical cord tissue. These cells have the ability to differentiate into many different types of cells, including bone, cartilage, muscle, and fat cells.

In addition to their differentiation potential, MSCs have been found to possess immunomodulatory and anti-inflammatory properties, which make them an attractive candidate for use in regenerative medicine and cell-based therapies.

Stem cell therapy has shown promise in treating a wide range of conditions, including degenerative diseases such as Parkinson’s and Alzheimer’s, autoimmune disorders such as multiple sclerosis and rheumatoid arthritis, and various types of injuries and tissue damage. The therapy works by promoting the body’s natural healing processes and replacing or repairing damaged cells, tissues, or organs with new, healthy cells.

Why Do Patients Explore the Option of Stem Cell Therapy?

Patients may explore stem cell therapy for a variety of reasons, depending on their individual circumstances and medical needs. Here are some of the common reasons why patients may explore stem cell therapy:

  • Treatment of chronic conditions: Stem cell therapy may hold promise for treating a wide range of chronic conditions, including neurodegenerative conditions such as Parkinson’s and Alzheimer’s, autoimmune disorders such as multiple sclerosis and rheumatoid arthritis, and various types of injuries and tissue damage.
  • Pain relief: Stem cell therapy may help to alleviate pain associated with conditions such as arthritis, back pain, and joint pain. By promoting tissue regeneration and repair, stem cell therapy can help to reduce inflammation and improve mobility.
  • Avoidance of surgery: For some patients, stem cell therapy may offer an alternative to surgery for conditions such as joint injuries or degenerative conditions. Stem cell therapy may be less invasive and have a shorter recovery time than surgical interventions.
  • Improvement in quality of life: Patients who are experiencing limitations in their mobility or other activities of daily living due to chronic conditions may explore stem cell therapy as a way to improve their quality of life and overall well-being.

It’s important to note that while stem cell therapy holds promise, it’s important to consult with a qualified healthcare provider to discuss the potential benefits, risks, and limitations of stem cell therapy for your specific condition. 

How Much Does Stem Cell Therapy Cost?

Patients seeking relief from their conditions are exploring what regenerative medicine, also known as stem cell therapy, may offer but also how much these therapies are. It is important to be sure you are receiving a quality option for the health investment.

Most insurances will not cover treatments deemed alternative, including regenerative medicine, so these therapies are considered out of pocket. Stem cell therapy in the United States varies depending on the clinic, the location, and the physician performing the procedure. Since the treatment types and requirements vary widely, the cost can, too. 

On average, adult Stem Cell therapy cost in 2023 in the U.S. range from $5,000 to $15,000.

Some clinics will offer financing options and others may also include travel accommodations for those having to travel. 

How Do You Find a Quality Provider for Stem Cell Therapy?

When it comes to stem cell treatment, it’s important to ensure that you’re receiving quality care to maximize the potential benefits and minimize the risks. Here are some things to look for to ensure you’re getting quality stem cell treatment:

Credentials of the provider: Make sure that the provider administering the stem cell therapy is licensed and certified in their respective field. You can verify this by checking their credentials with the appropriate regulatory body.

Treatment protocols: The clinic should have established protocols for administering stem cell therapy that comply with industry standards and regulations. They should be able to provide you with detailed information on the treatment process, including the source and type of stem cells used.

Clinical experience: Choose a clinic with a track record of success and experience in administering stem cell therapy. You can ask for patient testimonials or case studies to verify their claims.

Safety measures: Stem cell therapy should be conducted in a sterile and safe environment to minimize the risk of infection or other complications. The clinic should follow strict safety protocols, including the use of sterile equipment and a clean treatment area.

Follow-up process: Quality stem cell therapy should include ongoing care and follow-up to monitor your progress and ensure that you’re getting the most benefit from the treatment. The clinic should have a follow-up plan in place to track your progress and make any necessary adjustments to the treatment plan.

It’s important to do your research and ask questions before committing to stem cell therapy. You can also consult with your healthcare provider to get their input and recommendations. Some patients are exploring options of stem cell therapies internationally. Traveling internationally for the treatment will include costs of flights, hotels, and overall travel expenses on top of the cost of treatment. But patients should consider differences in regulations, quality control, and medical practices. For example:

  • Lack of regulatory oversight: Different countries may have varying regulations for stem cell therapy, and some may have less strict oversight than others. This can make it difficult for patients to know if the treatments they receive overseas are safe and effective.
  • Quality control issues: Stem cell therapies may vary in quality depending on the facility where they are administered, the source of the cells, and the methods used to prepare and administer the cells. Overseas facilities may not have the same quality control standards as those in the patient’s home country.
  • Safety concerns: Stem cell therapies carry the risk of infection, immune reactions, and other complications, particularly if the cells are not prepared or administered correctly. Patients who receive stem cell therapy overseas may be at greater risk of complications if the facility is not properly equipped to manage potential adverse events.
  • Difficulty accessing follow-up care: Patients who receive stem cell therapy overseas may have difficulty accessing follow-up care or medical attention if complications arise after they return home.

The Stem Cell Therapy cost in 2023 may be expensive, but well-informed patients who undergo the treatment often find the benefits prove to be worth their investment, especially in cases where they no longer require ongoing prescriptions and pain medications. Talk to a qualifying provider to see if this alternative medicine may provide you with the opportunity for a better quality of life you are seeking.

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our team.

You have Successfully Subscribed!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!