Everything You Need to Know About ALS

Everything You Need to Know About ALS

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease. Patients with this condition often experience a broad range of symptoms that get worse over time. While there’s no known cure, some interventions and regenerative therapies can be helpful.  

If you or a loved one has been diagnosed with ALS, it’s important to seek as much information as possible. That way, you can get the proper treatment and know what to expect as the disease manifests in your body. Here’s everything you need to know to be prepared for ALS. 

Lou Gehrig’s Disease: The Neurological and Muscular Effects 

ALS is also known as Lou Gehrig’s disease. Unfortunately, it has severe effects on your nervous system and muscular function as it progresses. 

Amyotrophic lateral sclerosis primarily affects your body’s motor neurons, which are responsible for dictating voluntary movements. Toward the end of the disease’s progression, involuntary movements like breathing can slow or stop entirely. 

When your motor neurons can no longer communicate with your muscles properly, your muscles start to waste away. This is called muscular atrophy. Once a muscle has atrophied, it no longer has enough tone to carry out normal movements. 

Since ALS is a progressive neurodegenerative disease, the symptoms get worse over time. In the later stages of the disease, ALS patients have trouble speaking, eating, swallowing, and making any voluntary movements at all. 

Who Gets ALS? Risk Factors and Genetic Components

Amyotrophic lateral sclerosis is usually a sporadic disease, meaning patients get it randomly without an obvious known cause. In some cases, although very rare, Amyotrophic lateral sclerosis is passed down through families. 

Genetic ALS stems from genetic mutations that are then passed on to children of affected parents. These cases only make up 10% or less of all ALS cases. 

Sporadic ALS may have certain risk factors, but there are no clear causes. This means scientists can’t yet point to a single cause of developing ALS if it’s not genetic. 

Possible Risk Factors for Sporadic Amyotrophic lateral sclerosis

Some loose associations between age, sex, and occupation have been made in relation to Amyotrophic lateral sclerosis cases. The presence of these risk factors does not guarantee that someone will develop ALS. 

These possible risk factors include: 

  • Age: Being 55 to 75 years old 
  • Sex: Early-life cases are most common in men 
  • Military service: Veterans may be at higher risk 

One possible reason that military veterans are at higher risk for Amyotrophic lateral sclerosis is because of their exposure to toxins like pesticides. Being around harmful chemicals may contribute to the development of this debilitating disease, but scientists aren’t sure of this. 

The First Signs of ALS

There are two types of ALS onset — limb onset and bulbar onset. Limb-onset Amyotrophic lateral sclerosis affects your arms or legs or both at the same time. You may notice problems with coordination, fine motor control, walking, and using your hands.

Bulbar-onset ALS first affects the neurons that control your speech and swallowing abilities. You might notice difficulty getting your words out properly or trouble swallowing. 

It doesn’t take long for the beginning symptoms of ALS to spread and get worse. This is often how physicians diagnose ALS, as rapidly progressing symptoms usually indicate a serious neurological problem. 

Progressive Problems and More Serious Symptoms 

As ALS develops, symptoms can become severe and even debilitating. Some patients experience changes seemingly overnight, while others develop more serious symptoms over weeks or months. 

The neuron degeneration caused by ALS can start to interfere with essential body functions such as breathing, blinking, and swallowing. 

Respiratory Symptoms

Respiration problems are common in end-stage ALS. The muscles in your chest that support breathing may become weak or paralyzed entirely. 

Some respiratory symptoms of ALS include: 

  • Shortness of breath (at rest) 
  • Excess saliva
  • Inability to clear your throat and lungs of mucus 
  • Pneumonia
  • Weak coughing 
  • Worsened breathing when lying flat 
  • Respiratory system failure 

Hospital interventions usually include ventilators to keep air flowing in and out of the patient’s lungs. 

Muscle Stiffness and Atrophy

As Amyotrophic lateral sclerosis interferes with their proper use, your muscles start to lose tone, mobility, and structure. This is known as muscle atrophy and may be accompanied by extreme stiffness. 

As Amyotrophic lateral sclerosis progresses, many patients lose the ability to speak loudly. The muscles involved in speech start to freeze up and become paralyzed. This can also cause an inability to swallow. 

Extreme Weight Loss

Being unable to consume food and fluids normally can lead to excessive weight loss in late-stage Amyotrophic lateral sclerosis patients. This isn’t a healthy type of weight loss, and it’s usually caused, in part, by loss of muscle mass. 

Mental Health Challenges 

Amyotrophic lateral sclerosis doesn’t affect your perception or cognition, meaning you can still hear, see, and think normally. Since the person is aware of their deteriorating condition, they may experience depression, anxiety, and other serious mental health challenges. Having a strong support system is key to remaining mentally well through your ALS journey. 

Treatment Options for ALS 

You can receive treatment for ALS to slow the progression of the disease. While there is no cure, medical intervention can help you maintain your quality of life for a longer period. 

ALS Medication

Some medications protect your motor neurons from further damage, which slows the progression of your ALS symptoms. These medications won’t revive damaged or dead neurons, but they can improve your disease prognosis. 

Physical and Occupational Therapy

Therapies that involve movement and motor functioning can help you maintain your muscle tone and avoid stiffness. While you still have the ability to move your limbs and smaller muscles, it’s crucial to practice doing so as much as possible. This repetition helps your brain and body stay in a good rhythm and slow motor damage. 

Regenerative Medicine

Some innovative treatments, like stem cell therapy for ALS, may improve your quality of life. Regenerative medicine focuses on healing and repairing damaged tissues and cells. 

Stem cell therapy uses unspecialized human cells to serve specific purposes throughout the body. In the case of ALS, stem cells are administered so they can differentiate into nerve cells to assist with your functioning and comfort. This may be worth considering if you want to approach your ALS symptoms from all possible angles. 

Living With Purpose: Life After an ALS Diagnosis

It’s important to maintain a positive outlook as much as possible. Having the support of medical professionals, family, and friends can make all the difference in your quality of life with Amyotrophic lateral sclerosis. Try not to lose hope; science is progressing toward new treatments every day. 

The Safety and Effectiveness of Stem Cell Treatment as an Emerging Approach for ALS

The Safety and Effectiveness of Stem Cell Treatment as an Emerging Approach for ALS

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by loss of upper and lower motor neurons resulting in paralysis, respiratory insufficiency, difficulties speaking and swallowing, stiffness and spasticity, and muscle atrophy. Commonly known as Lou Gehrig’s disease, after the baseball player was diagnosed with it, ALS is diagnosed in an estimated 5,000 Americans each year.

Currently, ALS has a median survival time of 4.32 years and no known cure. As part of the effort to develop new therapeutic options to slow the progression of ALS, stem cell (SC) transplantation has shown potential in recent clinical trials. 

In this review, Aljabri et al. examine the results of various clinical trials exploring the use of stem cell therapy as a viable therapy for ALS. Specifically, the authors identified six studies determined to have met the established criteria for review.

As part of this research, the authors examined the efficacy of SC transplantation in patients with ALS. Studies examined included a number of routes of administration, including subcutaneous, combined intrathecal and intramuscular, intravenous and intralumbar injections, and intrathecal approach. These studies all demonstrated slower decline or significant improvement as measured on the ALS Functional Rating Scale (ALSFRS-R).  

While there appears to be a benefit in this application, the authors of two of the studies did not observe a significant difference in the efficacy between treatment and placebo groups after injections. 

Additionally, the authors noted that all three studies using bone marrow mesenchymal stem cells (BM-MSC) demonstrated a significant decrease in the progression of disease burden and an overall slower decline in the ALSFRS-R score. On the other hand, studies that used granulocyte colony-stimulating factor (G-CSF) did not demonstrate a significant benefit.

While these results are promising, the authors point out limitations of the study that make it difficult to identify the long-term effects and long-term benefits associated with SC therapy. These limitations include short follow-up periods of either 6 or 12 months and the loss of patients during follow-up, both of which compromise the ability to determine long-term benefits and effects with fidelity.

Aljabri et al. also highlights many challenges associated with the introduction of SCs into the CNS. Among these challenges include the increased risk of AEs associated with the multiple SC injections required to deliver therapeutic doses and determining the most appropriate route of injection for therapeutic benefits.

The authors conclude that early clinical trials have made great progress in delineating the safety of SC therapy in the treatment of ALS. What remains to be determined is how effective SCs are compared to other forms of therapy. While the current data of SC therapy hold great promise, more properly designed clinical trials are needed to verify their benefit.

Source: Aljabri A, Halawani A, Bin Lajdam G, Labban S, Alshehri S and Felemban R (2021) The Safety and Efficacy of Stem Cell Therapy as an Emerging Therapy for ALS: A Systematic Review of Controlled Clinical Trials. Front. Neurol. 12:783122. doi: 10.3389/fneur.2021.783122

A Comprehensive Review of Mesenchymal Stem Cell Therapy in Amyotrophic Lateral Sclerosis (ALS) Patients

A Comprehensive Review of Mesenchymal Stem Cell Therapy in Amyotrophic Lateral Sclerosis (ALS) Patients

Amyotrophic lateral sclerosis (ALS) is a rare, deadly progressive neurological disease that affects the upper and lower motor neurons. Characterized by weakening and gradual atrophy of the voluntary muscles, ALS gradually affects the ability to eat, speak, move, and eventually breathe.

With an estimated survival rate of 2 to 5 years from disease onset, 90% of ALS patients develop sporadic ALS and there is no known cure. Although the cause of ALS remains unknown, there is scientific evidence that both genetics and environment are key contributors. This evidence includes over 30 different gene mutations and a number of environmental factors (exposure to toxins, heavy metals, pesticides, smoking, and diet) have been found to be associated with neurological destruction and ALS development. Additionally, ALS has been found to be approximately 2 times more likely to occur in men than women. 

In the search for a definitive cure for ALS, the use of mesenchymal stem cells (MSCs) for both treatment and management of the condition has been increasingly more common in preclinical and clinical studies. 

In this review, Najafi et al. discuss multiple aspects of ALS and focus on MSCs’ role in disease management as demonstrated in clinical trials. 

MSCs are multipotent cells with immunoregulatory, anti-inflammatory, and differentiation abilities that make them a strong candidate for use in therapeutic applications intending to expand the lifespan of ALS patients. 

To date, preclinical research investigating the cause and potential treatment of ALS primarily relies on data gathered from rat and mouse models. As part of these models, researchers have discovered that the transplantation of MSCs through multiple routes (including intrathecal, intravenous, intramuscular, and intracerebral) can be a safe and effective way to delay the decline of motor function and promote neurogenesis.  

These preclinical studies have also demonstrated that the administration of MSCs from specific tissues has shown significant advantages in delaying the degeneration of motor neurons, improving motor function, and extending lifespan.

Over 20 years of clinical research have found that direct injection of autologous expanded MSCs is safe and well tolerated and demonstrated a significant decrease in disease progression and increase in life expectancy in patients. 

The authors conclude that ALS is a fatal neurodegenerative disease with no definitive cure.  However, several preclinical and clinical studies have shown that MSC’s anti-inflammatory, immunoregulator, and differentiation properties, have demonstrated to be a good therapeutic approach for treating ALS.  

Source: Najafi S, Najafi P, Kaffash Farkhad N, et al. Mesenchymal stem cell therapy in amyotrophic lateral sclerosis (ALS) patients: A comprehensive review of disease information and future perspectives. Iran J Basic Med Sci. 2023;26(8):872-881. doi:10.22038/IJBMS.2023.66364.14572

A Review of Clinical Trials for Multiple Sclerosis with Mesenchymal Stem Cell Therapy

A Review of Clinical Trials for Multiple Sclerosis with Mesenchymal Stem Cell Therapy

Characterized by the body attacking the myelin (the protective sheath that covers the nerve fibers), MS causes communication issues between the brain and the rest of the body. As the nerves continue to deteriorate, the condition can cause permanent damage.

Currently, there is no pharmaceutical treatment for MS, only medications that treat the symptoms of the condition. 

In the field of regenerative medicine, mesenchymal stem cells (MSCs) have emerged as a candidate that could potentially treat a number of diseases, including MS. Specifically, MSCs have anti-inflammatory effects and have demonstrated the ability to differentiate in order to target the overactivity and self-antigen attacks observed in the development and progression of MS.  

As part of this review, Alanazi et al. reviewed a number of clinical trials that have utilized MSCs isolated from a variety of sources, including peripheral blood, bone marrow (BM-MSCs), adipose tissue (AD-MSCs), umbilical cord (UCMSCs), and the placenta, in order to better understand their potential as a treatment option for MS. 

An analysis of these clinical trials led the authors of this review to the consensus that MSCs appear effective in inhibiting CD4+ and CD8+ T cell activation, T regulatory cells, and macrophage switch into the auto-immune phenotype.

Further analysis of the specific MSCs used to treat MS by Alanazi et al. indicates that while BM-MSCs, AD-MSCs, and UCMSCs all demonstrate beneficial effects when applied to the treatment of MS, UCMSCs appear to be the best option.

According to the authors, UCMSCs demonstrate faster self-renewal than other MSCs, are able to differentiate into three germ layers, and can accumulate in damaged tissue or inflamed areas. Additionally, UCMSCs are also among the easiest MSCs to source, demonstrate a high concentration of MSCs, are safe and inexpensive, and are not associated with ethical issues.

Based on the information reviewed, Alanazi et al. recommend emphasizing the clinical utility of UCMSCs for regenerative medicine and immunotherapy, including for the treatment of MS.

Source: “Mesenchymal stem cell therapy: A review of clinical trials for multiple ….” 23 Aug. 2022, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9420954/

Benefits of Adding Salt or Minerals to Your Water for Hydration

Benefits of Adding Salt or Minerals to Your Water for Hydration

Adding salt or minerals to your water for hydration can have certain benefits. Here are a few potential advantages:

Electrolyte balance: Electrolytes are minerals that carry an electric charge and play a crucial role in maintaining proper fluid balance, nerve function, and muscle contractions. By adding a small amount of salt or minerals like potassium, magnesium, and calcium to your water, you can help replenish electrolytes lost through sweat or excessive urination. This can be particularly beneficial during intense physical activity or in hot weather conditions.

Enhanced hydration: Adding a pinch of salt to your water can improve its absorption and promote better hydration. The presence of electrolytes in water can aid in fluid retention and prevent dehydration by facilitating the absorption of water in the body.

Improved taste and palatability: Some people find plain water to be bland or unappealing, which can lead to inadequate fluid intake. Adding a touch of salt or minerals can enhance the taste of water, making it more enjoyable and encouraging you to drink more.

Replenishing trace minerals: Certain minerals, such as magnesium and potassium, are essential for various bodily functions. If your diet is lacking in these minerals, adding them to your water can be a convenient way to supplement your intake.

Support for active lifestyles: For individuals engaged in prolonged or vigorous exercise, consuming electrolytes through water with added salt or minerals can help prevent muscle cramps, fatigue, and maintain optimal performance.

It’s important to note that while adding salt or minerals to your water can have benefits, moderation is key. Excessive intake of salt or minerals can have negative health effects, such as increased blood pressure or electrolyte imbalances. It’s recommended to consult with a healthcare professional or a registered dietitian before making significant changes to your hydration routine or electrolyte supplementation.

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our team.

You have Successfully Subscribed!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!