What Are Mesenchymal Stem Cells?

What Are Mesenchymal Stem Cells?

Mesenchymal stem cells are a specific type of stem cell. MSCs have been the subject of many medical studies and extensive research. MSCs are essentially the raw materials that the body uses to generate new tissues. 

These versatile cells can differentiate or transform into many different forms of cells, including the following:

  • Skin cells
  • Corneal cells
  • Neural (brain) cells
  • Muscle tissue
  • Cartilage
  • Bone

Like many other types of cells and hormones, MSCs are found in lower concentrations as people age. The remaining mesenchymal stem cells also become less robust, which means that they are not as effective at replacing damaged tissues.

When they were originally discovered, MSCs were thought to have been present within the bone marrow only. However, researchers later discovered that this was not the case. MSCs can be retrieved from the following locations and utilized for stem cell therapy:

Bone Marrow Aspirate

When harvesting MSCs from bone marrow aspirate, a medical professional will retrieve MSCs from the bone marrow using a large syringe. While MSCs are technically present in all bone marrow, physicians typically retrieve aspirate from the hip. This large bone structure has the highest concentration of mesenchymal stem cells and is also the easiest spot to access.

Adipose Tissue

MSCs can also be sourced from adipose (fat) tissue. This method is much easier on the patient than using bone marrow aspirate. In addition, the adipose tissue may have a higher concentration of MSCs than the bone marrow.

Umbilical Cord Tissue

The third potential source of MSCs for therapeutic purposes is umbilical cord tissue. Specifically, medical professionals harvest Wharton’s Jelly, which is located within the umbilical cord. Wharton’s Jelly yields the largest concentration of MSCs and is from healthy C-Section births from screened and tested mothers. 

Potential of Mesenchymal Stem Cells

Due to their regenerative properties and low immunogenicity, mesenchymal stem cells have shown promising results in the treatment of various conditions. They have been investigated for their potential in orthopedics, neurology, cardiology, autoimmune diseases, and even cosmetic procedures. Researchers are exploring their use in conditions such as osteoarthritis, Parkinson’s disease, heart failure, multiple sclerosis, and wound healing, among others.

Moreover, mesenchymal stem cells have demonstrated an impressive safety profile in clinical studies. Their compatibility with the human body, along with minimal risk of rejection or adverse reactions, makes them an attractive option for therapeutic applications. In addition, mesenchymal stem cells can be sourced from various ethical and non-controversial sources, like a patient’s own adipose tissue.

What Are Mesenchymal Stem Cells

What Can MSCs Be Used For?

MSCs have the potential to reduce the symptoms of various ailments, including osteoarthritis, sports-related injuries, and neurodegenerative conditions

While the overall effectiveness of mesenchymal stem cells is still being studied, many patients experience benefits such as reduced pain, improved quality of life, and long-term relief of symptoms. However, the cumulative impact of MSCs will depend largely on the condition being treated and patient-specific factors.If you or a loved one are facing an autoimmune disorder, orthopedic condition, or neurodegenerative condition, mesenchymal stem cells may be a potential option to explore further. This approach has the potential to slow the progression of degenerative conditions or stimulate the body’s natural healing processes. If you would like to learn more contact us today!

Don’t let pain control your life, call us at (800) 531-0831

How Do Mesenchymal Stem Cells Repair?

How Do Mesenchymal Stem Cells Repair?

Over the last decade, the field of stem cell therapy has grown in research and awareness. This growth is thanks to mesenchymal stem cells (MSCs,) the type of cells most commonly explored for their powerful reparative properties. Medical professionals can harvest and concentrate these MSCs from multiple sources, making them more accessible. As a result, stem cells can be used as a form of regenerative medicine. This intervention offers potential benefits for patients suffering from neurodegenerative, orthopedic, and autoimmune conditions. This article will outline some basic information about MSCs and how Mesenchymal stem cells repair.

Basic Biology of MSCs

Stem cells are a unique type of cell. Unlike other cells, MSCs can divide into daughter cells and then transform into specialized cells such as those found in bone, brain matter, and soft tissue. Stem cells can be divided into two broad categories, embryonic and adult stem cells.

Adult stem cells are the primary type used in modern medical interventions. When adult stem cells were initially discovered, scientists believed they were only present in the bone marrow. 

While bone marrow aspirate can be an ideal source of stem cells, they are also present in adipose tissue, dental pulp, the kidneys, amniotic fluid, and the amniotic membrane. However, they are primarily harvested from adipose tissue, bone marrow, or umbilical cords.

MSCs’ Reparative Properties

Stem cells are naturally present in the human body. However, the concentration of these valuable cells is reduced as people age. As a result, older individuals typically have longer recovery times from injuries and are more prone to degenerative conditions.

Mesenchymal stem cells allow medical professionals to circumvent this natural degradation. They can harvest stem cells, concentrate them, and then administer them to a specific location, such as the site of an injury. Once administered, the stem cells will seek out inflammation and repair damaged tissue, thereby accelerating the natural healing process.

The Harvesting Process

Before they can be administered, stem cells must be harvested. Many patients opt for autologous stem cell therapy. This treatment involves the concentration of stem cells derived from the patient’s existing body tissues.

When preparing to harvest stem cells, the provider usually administers a local anesthetic. The provider will then harvest either bone marrow aspirate or adipose (fat) tissue depending on the preference and treatment plan. The stem cells are processed, concentrated, and administered back to the patient to targeted areas.

Stem cells have the potential to supplement the patient’s healing capabilities for six months to a year. This intervention can be utilized to treat many different conditions and may offer patients an alternative to traditional options or in conjunction with. If you would like to learn more about how Mesenchymal Stem Cells repair, contact us today!

A Review of Current Mesenchymal Stem Cell Clinical Applications

A Review of Current Mesenchymal Stem Cell Clinical Applications

Human mesenchymal stem cells (hMSCs) are multipotent adult stem cells found in tissue throughout the body, including in the umbilical cord, bone marrow, and adipose tissue. Capable of self-renewing and differentiating into multiple tissues including bone, cartilage, muscle, fat cells, and connective tissue[1], MSCs appear to have a wide range of potential for use as therapeutic purposes for many serious health problems occurring throughout the body.

In this review, Rodriguez-Fuentes et al. examined currently registered (as of July 2020) clinical trials involving mesenchymal stem cells with the goal of analyzing the different applications of MSCs in a clinical setting to demonstrate the growing and broad potential of their therapeutic application relative to the reconstruction of damaged tissue.

As of July 2020, the authors identified 1,138 registered clinical trials (CTs) worldwide using MSCs to investigate their therapeutic potential. Therapeutic applications are a relatively new area of study, evidenced by the fact that only 19 CT studies were started between 1995 and 2005 and over 900 were initiated in the last ten years (2011-present). The majority of these CTs focused on the fields of traumatology, neurology, cardiology, and immunology. Interestingly, of the 1,138 CTs identified in this query, only 18 had published outcomes. 

Examining the global distribution of registered CTs, it was observed that CTs are located in 51 countries, with China (228) and the US (186) leading the research.

As part of this review, and in addition to examining the number and geographic locations of registered CTs, the sourcing, isolation and treatment methods, and storage conditions of MSCs used in each clinical trial.

Most of the MSCs used for these CTs were obtained from cells of the iliac crest, placenta, and adipose tissue. All recovered cells underwent steps of purification and expansion prior to use in patients. Additionally, all methods used in these CTs were also found to follow good manufacturing practices (GMP).

Upon completing their review of registered CTs, Rodriguez-Fuentes et al. also observed that medical specialties for the most published studies included (in descending order) cardiology, traumatology, pneumology, neurology, hematology, ophthalmology, and plastic surgery. The most frequent pathologies addressed in these published CT studies included knee osteoarthritis, ischemic heart disease, and dilated cardiomyopathy. While the number of MSCs used varied by study, most utilized around 100 million MSCs.

The authors concluded that most studies analyzed as part of this review demonstrate positive outcomes with no serious adverse effects. While China and the US lead the world in the number of registered MSC clinical trials, the authors point out the fact that many of these CTs have multiple locations in different countries – indicating the importance of, and willingness to, collaborate internationally on this research.

Although most of the conditions for which clinical utility of MSCs have been published are conditions that do not currently have specific treatments with desirable or effective outcomes, there appears to be significant and broad potential for the clinical use of hMSCs without serious adverse events.


While there are currently at least 1,138 registered MSC CTs, there is still much to be examined and understood about MSCs. As such the continually increasing number of CTs including MSCs will help identify and demonstrate the therapeutic potential of these versatile stem cells.


[1] “Mesenchymal stem cells – Latest research and news | Nature.” https://www.nature.com/subjects/mesenchymal-stem-cells.

Source:  Mesenchymal Stem Cells Current Clinical Applications. From https://www.sciencedirect.com/science/article/pii/S018844092030638X

A Review of Current  Perspectives of Stem Cell Therapy in Orthopedic Surgery

A Review of Current Perspectives of Stem Cell Therapy in Orthopedic Surgery

It is estimated that over 126 million Americans, or nearly one in two adults, are affected with some form of musculoskeletal disorder, condition, or injury – a number comparable to the percentage of the population currently living with a chronic lung or heart condition[1].

While there are a number of treatment modalities proven to be effective for treating musculoskeletal disorders, conditions, and injuries, using stem cells appears to be among the most explored promising potential option of these methods.

With mesenchymal stem cells (MSCs) being the preferred source of stem cell, mostly because of their abundance (including sources such as bone, tendon, skin, and blood) and ability to differentiate to many different tissues, orthopedic surgeons have focused largely on MSC therapies for healing a number of specific orthopedic conditions, including the healing of fractures, regenerating articular cartilage in degenerative joints, healing ligaments or tendon injuries, and replacing degenerative vertebral discs.

The goal of the comprehensive literature review conducted by Akpancar et al. was to evaluate the most recent progress in stem cell procedures and current indications in the orthopedic clinical care setting.

Specifically, as part of this review, the authors found that therapeutic applications using stem cells, and MSCs in particular, allow the stem cells to be used as progenitor cells as a way to enhance the healing and repair process. The authors point out that while many sources of stem cells have been considered for use in orthopedic procedures, including bone marrow-derived MSCs (BM-MSCs), adipose-derived stem cells (AD-MSCs), synovial tissue-derived stem cells (ST-MSCs), peripheral blood-derived progenitor cells, and bone marrow concentrate, the optimal source of stem cells has yet to be determined.

In addition, Akpancar et al. while reviewing the orthopedic indication of stem cells on various musculoskeletal disorders, conditions, and injuries, found that in large part, stem cell therapy demonstrated positive results in improved healing in a variety of orthopedic indications, including major orthopedic bone-joint injuries, osteoarthritis-cartilage defects, ligament-tendon injuries, as well as other conditions.

Despite these findings, the authors also point out that while there have been large amounts of preclinical studies conducted and there continues to be increasing interest in performing additional studies on human subjects, the current findings gathered from preclinical studies are still preliminary. Considering this, the authors recommend additional research be conducted to evaluate the safety and efficacy of stem cells therapy in orthopedic surgery.

Source:  (2016, August 16). The Current Perspectives of Stem Cell Therapy in Orthopedic Surgery. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5253188/


[1] “One in two Americans have a musculoskeletal condition: New report ….” 1 Mar. 2016, https://www.sciencedaily.com/releases/2016/03/160301114116.htm.

Advancing Stem Cell Treatment for Traumatic Brain Injury

Advancing Stem Cell Treatment for Traumatic Brain Injury

According to the CDC, in 2019, traumatic brain injury (TBI) contributed to nearly 61,000 deaths in the United States alone[1]. While there are several clinical treatments designed to address the neurological dysfunction after sustaining a TBI, including hyperbaric oxygen, brain stimulation, and behavioral therapy, none appear to produce satisfactory or lasting results.

In recent years, several studies have demonstrated the therapeutic potential of various stem cells, including mesenchymal stem cells (MSCs), neural stem cells (NSCs), Multipotent adult progenitor cells (MAPCs), and endothelial progenitor cells (EPCs) in the treatment of neurological impairment resulting from TBI. Specific benefits of these stem cells observed throughout these studies demonstrate that exogenous stem cells have the ability to migrate to the site of damaged brain tissue,  help to repair damaged tissue, and significantly improve neurological function.

In this article, Zhou et al. review recent findings on the role, effects, deficiencies, and related mechanisms of the various stem cells being used as therapeutic agents in the treatment of TBI.

Examining numerous studies occurring between 2010-17 and exploring various TBI models and the roles of different stem cells in animal models, the author’s general summary is that the use of stem cells demonstrated some form of measurable improvement in every study reviewed.  As a reference, specific observed benefits included improved integrity of the blood-brain barrier; improved neurological function, social interaction, and motor performance; enhanced neurovascular repair and recovery; and enhanced cognitive and spatial learning, information retention, and memory retrieval.

The authors point out that although there appears to be a large amount of research exploring the complexity of pathophysiology and the application of stem cell therapy for treating TBI, many problems still exist and must be addressed before the best method for TBI recovery can be determined.

Specifically, while there have been several clinical studies exploring the role of stem cells in the role of TBI treatment and recovery, and while most demonstrate promising results, the studies have almost universally been completed on mice and/or rats, contained human sample sizes that are not large enough,  or failed to include a control group.  As a result, Zhou et al. call for further study, including multi-center long term follow-up and randomized prospective trials that examine the safety of stem cells, route of injection, the time of injection, and the specific mechanisms as a way to identify the appropriate and effective stem-cell-based therapeutic treatment options for those suffering from various types of TBI.

Source:  (2019, August 13). Advance of Stem Cell Treatment for Traumatic Brain Injury. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6700304/

[1] (2021, May 12). Get the Facts About TBI | Concussion …. Retrieved from https://www.cdc.gov/traumaticbraininjury/get_the_facts.html

Using Mesenchymal Stem Cells for Musculoskeletal Regeneration in Clinical Applications: Current Status and Perspectives

Using Mesenchymal Stem Cells for Musculoskeletal Regeneration in Clinical Applications: Current Status and Perspectives

Research exploring the benefits of mesenchymal stem cells (MSCs) has demonstrated tremendous potential as a regenerative therapy option for the musculoskeletal system. Research into these cell-based regenerative therapies is promising, and they must continue to provide the data necessary to show their therapeutic potential in clinical settings. 

In this review, Steinert et al. review and summarize some of the promising and unique therapeutic features of adult MSCs, detail their current state of clinical application as a regenerative musculoskeletal therapy, and describe the potential for future developments in this field.

Specifically, as a part of this review, the authors share the status of 31 clinical cell therapies for musculoskeletal regeneration occurring between 1996 through 2011 and specifically covering bone defects and nonunions, avascular necrosis of the hip, cysts and benign tumors of the bone, cartilage lesions, and tendons and ligaments; results for the majority demonstrate the safety of and/or the efficacy associated with the specific method of cell-delivery being evaluated.

The field of regenerative orthopedics points to the large body of MSC clinical research indicating the successful treatment of myocardial infarction, post-stroke or spinal cord injury nerve regeneration, graft versus host disease, and a variety of other conditions as an indication that the application has tremendous potential as a regenerative therapeutic option in a wide variety of musculoskeletal indications.

Although there appears to be evidence demonstrating the paracrine and trophic functions of MSCs, research explaining the specifically demonstrated therapeutic effects is still being determined. The authors highlight that research continues to explore the reasonable therapeutic expectations associated with MSC-based treatments, an essential step required to fully understand the range of healing associated with musculoskeletal regenerative cell-based therapy.

The authors, in concluding this review, point out that the demand for MSC-based musculoskeletal regenerative therapies continues to increase. Steinert et al. call for further study into the specific combination of cell preparation, bioactive factors, and stimuli for each specific MSC therapeutic application. Once these have been demonstrated for each application and should they demonstrate better or improved outcomes compared to standard treatments, only then can they be considered for long-term clinical application.

Source:  (n.d.). Concise review: the clinical application of mesenchymal stem cells …. Retrieved from https://pubmed.ncbi.nlm.nih.gov/23197783/

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our team.

You have Successfully Subscribed!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!