When it comes to their potential for biomedical applications, mesenchymal stem cells (MSCs) continue to garner support and attention from the global scientific community. Isolated from a variety of sources, including bone marrow, adipose tissue, and umbilical cord tissue, MSCs demonstrate multipotent differentiation in vitro. In other words, they are tissues that are able to develop into more than one type of cell.

Considering MSCs ability to expand into osteogenic, chondrogenic, adipogenic, and myogenic cells for the purposes of repair and recovery, they continue to attract attention for treating a wide variety of conditions, including inflammatory lung and musculoskeletal disorders, multiple sclerosis (MS), and Crohn’s disease (CD).

As part of this review, Markov et al. provide a brief overview of MSC sources, migration process, and unique immunomodulatory attribute’s mechanisms while also focusing on the current findings pertaining to the immunoregulatory plasticity of MSCs and how that contributes to the regulation of immune response to elicit the desired therapeutic outcomes in patients suffering from immune-mediated/immune-dysregulating diseases.

Interestingly, the ability of MSCs to exhibit anti-inflammatory and regenerative properties has proven beneficial in clinical trials exploring therapeutic treatments of a number of immune-mediated disorders, including osteoarthritis, rheumatoid arthritis, and MS.  Specifically, the findings of these clinical trials provide evidence that MSCs replace injured tissues while also serving as a source of growth factors and regenerative molecules. These findings also demonstrate that specific differential molecular mechanisms, when correctly identified, appear to be able to adjust the potential of MSCs in the regeneration of damaged tissue.

This review also explores the immunomodulatory properties of MSCs. Specifically, MSCs have been found to modify immunological reactions in several ways, including T cell suppression and induction of macrophages shift from M1 to M2, making MSCs an emerging therapeutic treatment option to a number of immune-mediated disorders including systemic lupus erythematosus (SLE), MS, OA, RA, and CD.

Despite the observed benefits of MSCs in treating these immune-mediated disorders, the authors call for additional large-scale studies over prolonged periods of evaluation before fully utilizing MSCs in clinical applications.

Given their ability to differentiate into a wide variety of cells, their immunomodulatory competence, and lower ethical concerns, Markov et al. conclude that MSCs have good reason to be considered a viable therapeutic option for the treatment of a wide range of immune-mediated disorders. 

While animal studies continue to provide evidence of the safety, feasibility, and efficacy of administration of MSCs in immunological disorder, the authors point out that potential of MSCs have not yet been fully realized through human clinical outcomes. Considering this, the authors call for further investigation and study to better understand how recruiting MSCs can improve migration and homing following transplantation. 

Finally, the authors point out that enriching MSC culture, choosing appropriate induction factors, and exploring new ways to promote MSCs homing post-transplantation when accompanied by further exploration of optimal MSC dose and route will further improve therapeutic outcomes in patients with immune-mediated diseases.

Source: (2021, March 18). Mesenchymal stem/stromal cells as a valuable source for the … – NCBI. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7971361/

WordPress Image Lightbox
Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our team.

You have Successfully Subscribed!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!