Mesenchymal Stem Cell-Based Therapy for Type 1 Diabetes

Mesenchymal Stem Cell-Based Therapy for Type 1 Diabetes

Currently, it’s estimated that nearly 1.5 million Americans are living with type 1 diabetes (T1D), a number that is expected to increase to over 2 million by the year 2040[1].  In the U.S. alone, healthcare costs and lost wages directly related to T1D currently exceed $16 billion per year.  

While the most common treatment for T1D continues to be regular injections of insulin and is effective in improving hyperglycemia, the treatment has proven ineffective in removing autoimmunity and regenerating lost islets. Additionally, islet transplantation, a recent and experimental treatment option for T1D, has demonstrated its own set of issues, primarily poor immunosuppression and a limited supply of human islets.

The rapid progression and recent advances in stem cell therapy, including mesenchymal stem cell (MSC) therapy, have created interest in using stem cells to help manage the symptoms of T1D. In this review, Hai Wu reviewed the properties of MSCs and highlighted the progress of using MSCs in the potential treatment of T1D.

Diabetes clinics have demonstrated progress using depleting antibodies as a way to treat T1D, but continue to find remission to typically last for only a short period of time. Additionally, treatment with these antibodies has shown not to discriminate between different types of T cells, meaning even T cells involved in maintaining normal immune function are depleted; this phenomenon has been shown to contribute to other serious health complications.

In addition to the immunomodulatory effects demonstrated by MSCs, they have also shown the ability to recruit and increase the immunosuppressive cells of host immunity. Recent results from clinical trials have shown that just a single treatment with MSCs provided a lasting reversal of autoimmunity and improved glycemic control in subjects with T1D. 

While these results demonstrate the potential of MSCs for a wide range of autoimmune diseases, Wu points out that the small sample size of these studies necessitates further clinical trials before considering approval for use in clinical applications.

Studies of human islets and human islet transplantation have been limited because of a shortage of pancreas donors. Although unable to be definitively demonstrated, and considering their ability to differentiate into other cell types, there is a hypothesis that MSCs can transdifferentiate to insulin-producing cells. While not yet fully understood, this hypothesis is further supported by the observation of crosstalk between MSCs and the pancreas in diabetic animals.

Other in vivo studies examining this relationship has produced mixed results.  For example, Chen et al. (2004) were unsuccessful in attempts to transdifferentiate MSCs into insulin-producing cells in vitro. On the other hand, several studies, including those by Timper et al. (2006) and Chao et al. (2008) demonstrate the formation of islet-like clusters from in vitro cultured MSCs and the possibility of using MSCs as a source of human islets in vitro.

Despite these promising findings, the author highlights that most of these studies failed to generate sufficient amounts of islets required for human transplantation and long-term stability.  However, Wu notes recent advances in tissue engineering, including biocompatible scaffolds, might better support in vitro generation of islets from MSCs.

The author concludes that MSCs can be isolated from multiple tissues, are easily expanded and genetically modified in vitro, and are well-tolerated in both animal and human studies – making them a good candidate for future cell therapy.  On the other hand, stem cell therapy alone might not be enough to reverse the autoimmunity of T1D, and co-administration of immunosuppressive drugs may be necessary to prevent autoimmunity. 

MSCs have shown great promise in the field of regenerative medicine. While stem cells used as a potential treatment for T1D appear generally safe, the author calls for future in-depth mechanistic studies to overcome the identified scientific and manufacturing hurdles and to better learn how cell therapy can be used to treat – and eventually cure – T1D.

Source: “Mesenchymal stem cell-based therapy for type 1 diabetes – PubMed.” https://pubmed.ncbi.nlm.nih.gov/24641956/.


[1] “Type 1 Diabetes Facts – JDRF.” https://www.jdrf.org/t1d-resources/about/facts/. Accessed 2 Nov. 2022.

Why You Should Choose Regenerative Medicine over Surgery

Why You Should Choose Regenerative Medicine over Surgery

Chronic pain can develop anywhere in the body. It can develop from conditions like arthritis, result from a traumatic injury, or serve as an ongoing symptom of diseases such as cancer or neuropathic pain from diabetes. Often, patients suffering from chronic pain feel their only options for relief are ongoing medications to mask their symptoms or surgery, like a knee replacement to treat chronic knee pain. However, regenerative medicine, also known as stem cell therapy, offers a new option for chronic pain patients to explore that may be especially beneficial for those hoping to avoid surgery. Here we will break down why you should choose regenerative medicine over surgery.

Stem Cell Treatments Have Lower Risks than Surgery

You may want to avoid surgery for many reasons, and the risks of anesthesia and the potential for complications with large incisions are essential factors to consider. Stem cell therapy does not require general anesthesia, and since the process only requires injections, not incisions, there are no surgical wounds or scars. 

If you’ve had an adverse reaction to anesthesia or possess risk factors for experiencing a negative response, such as age or a coexisting condition, stem cell therapy offers a non-surgical alternative to finding relief. 

Stem Cell Treatments Require Minimal Downtime

Suppose that you lead an active, busy lifestyle. In that case, you probably don’t have time for an extended recovery period, especially when that recovery time keeps you from essential activities like driving or walking. 

While most surgeries to alleviate chronic pain require extensive downtime, patients who choose stem cell treatments typically return to work or daily activities within a few days. Although stem cells do take time to heal damaged tissues, many patients begin to experience pain relief within two to three weeks. 

Surgery Doesn’t Guarantee Pain Relief

When your chronic pain leads you to the point where you’re willing to undergo surgery, you want to know that the preparation, procedure, downtime, and expense will alleviate your pain. Unfortunately, however, that’s not always the case.

A 2018 study showed that 20% of those who undergo a total knee replacement still live with chronic knee pain. In addition, another study revealed that up to 58% of patients who undergo hip replacement surgery continue to endure persistent pain. 

Stem Cell Treatments Are Effective and Non-Invasive 

It can be hard to believe that stem cell injections can potentially offer similar, if not better, results than surgery. However, research following patients for two years after their stem cell treatments found all participant groups, regardless of age or BMI, experienced significant pain improvement. Patients who feel surgery is their only option to alleviate chronic pain should ask their doctor about the benefits of pursuing stem cell therapy. If surgery is unavoidable, stem cell therapy can also help post-surgery to help improve healing time and reduce pain. If you would like to choose regenerative medicine over surgery contact Stemedix today!

Chronic Fatigue Syndrome Therapy with Stem Cells

Chronic Fatigue Syndrome Therapy with Stem Cells

Chronic fatigue syndrome (CFS) is a collection of symptoms that make work, relationships, and personal achievement more difficult. Patients with CFS cannot pinpoint other underlying disorders or diseases as the cause of their symptoms. 

If chronic fatigue syndrome is taking over your life, there is a promising potential solution: regenerative medicine therapy

How Regenerative Medicine May Help

Regenerative medicine, also known as stem cell therapy, works by harnessing your body’s ability to regenerate healthy cells. 

When you suffer from a complex disorder like chronic fatigue syndrome, your healthy cells and tissues are constantly under attack. Stem cell therapy may be able to rebuild damaged cells so you can experience the relief you have been seeking. 

Pain Management

Common symptoms of CFS include muscle pain and weakness. Sufferers of CFS also report frequent headaches that can be debilitating. 

Stem cell treatments have the potential to provide long-term pain relief using your body’s natural regenerative processes. If you are looking for an alternative method of pain relief, stem cell therapy might be for you. 

Immune System Regulation

Chronic fatigue syndrome is believed to be a type of autoimmune disorder. This means that your immune system incorrectly identifies your own cells and tissues as threats. 

Stem cell therapy can help regulate patients’ immune systems in some cases. This would prevent your immune system from continuing the cycle of draining symptoms you experience with CFS. 

Energy Boost

A key sign of chronic fatigue syndrome is constant exhaustion. No matter how much sleep, you probably feel like you had no rest at all. 

Stem cell therapy has the potential to boost your energy levels by repairing and rebuilding essential cells and tissues. Your body has been under attack for a long time, but stem cell therapy may be able to break the cycle. 

The Power of Stem Cells in CFS Therapies

Since stem cells can develop into almost any type of specialized cell in your body, they can be powerful tools for rejuvenating your health. Your body follows certain processes to repair and regenerate cells and tissues. Stem cells kick-start these processes and provide more resources for repair. 

Managing CFS is about relieving symptoms. If your daily life is affected by chronic fatigue syndrome, stem cell therapy might be worth exploring to potentially improve how you feel. This experimental therapy is natural and has been studied to be safe and provide the potential for symptom relief. To learn more about the options available at Stemedix, contact us today!

Could Fat Be the Secret to Regenerative Medicine Treatments for Parkinson’s Disease?

Could Fat Be the Secret to Regenerative Medicine Treatments for Parkinson’s Disease?

For several decades, there has been extensive research into how regenerative medicine, also known as stem cell therapy, can help patients suffering from central nervous system disorders. One of the most heavily researched conditions has been Parkinson’s disease. Patients who struggle with Parkinson’s understand how severe their symptoms can be and how rapidly the disease can progress. This makes finding an effective treatment essential for maintaining the quality of life. Here we will discuss the possible treatments for Parkinson’s Disease.

How Stem Cells Can Make a Difference With Parkinson’s Disease

Recent studies have shown that body fat could be a promising key to helpful stem cell treatment in patients with Parkinson’s disease. 

Researchers at Harvard Medical School and Massachusetts General Hospital found that fatty tissue can produce stem cells for treating various central nervous system disorders, providing a homegrown source of regenerative medicine.

Neural stem cells were identified in these studies when scientists assessed body fat in mice. When examining the subcutaneous adipose tissue, researchers found nerve fibers that contained Schwann cells. Schwann cells are a type of cell used in the maintenance and regeneration of neurons in the peripheral nervous system. 

In vitro analysis of the Schwann cells revealed that they can provide stem cell-like qualities. These stem cell qualities may have regenerative properties that support motor and sensory actions in patients with conditions like Parkinson’s disease.

One of the benefits of sourcing cells from body fat is that it is derived from the patient’s own tissue. Using homegrown stem cells has been shown to be most effective when treating numerous conditions. 

Scientists found that the Schwann cells discovered in the study improved digestive function in mice with disorders like gastroparesis and colonic aganglionosis. This occurred when injected into the gastrointestinal tract of the mice. 

When applied to the central nervous system, these cells could potentially improve nervous system function in patients with certain neurological disorders.

A researcher in this study explained:

“Because adipose stem cells are widely considered to be safe therapeutic agents for humans … the derivation of SAT-[neural stem cells] offers unprecedented potential for therapeutic application in neurological diseases.” 

This means that the cells identified in the study could one day provide a safe, natural treatment for patients struggling with the symptoms of Parkinson’s disease. 

A Promising Option For Parkinson’s

It is worth noting that there’s still much research to do when it comes to stem cells and how they might treat various disorders. 

The relationship between Parkinson’s disease and stem cell therapy is the subject of several ongoing studies. The hope is that stem cell treatments are soon widely accepted as an alternative way to potentially relieve the effects of degenerative neurological conditions. If you would like to learn more about the available treatments for Parkinson’s Disease contact us today at Stemedix!

Can CBD Help You Lose Weight?

Can CBD Help You Lose Weight?

In recent years there has been a surge in the popularity of CBD products. Everything from skincare to pain relief is available with CBD in the formula. Research has continued to unveil more benefits attributed to CBD oil. One of the lesser-known benefits may be increased weight loss.

What Is CBD?

CBD refers to cannabidiol. Cannabidiol is the component of cannabis that does not produce psychoactive effects, such as the signature “high” often associated with marijuana. Instead, cannabidiol produces a wide variety of potential health and aesthetic benefits, condition spasms, including pain relief, lower blood sugar, and improved skin health.

CBD is often extracted from the marijuana plant and incorporated into products in its purest form. To experience optimal benefits, many people use pure CBD oil on its own. This method allows your body to absorb the highest concentration of cannabidiol, enhancing its intended effect.

CBD and Weight Loss

Have you been trying to lose weight, but failing to see real results? Sometimes diet and exercise alone aren’t enough to produce significant weight loss. This is especially true for people who have a slower metabolism due to age or underlying medical issues. Fortunately, the cannabidiol may provide an effective solution.

Recent research has linked CBD oil to increased weight loss. Studies have shown that cannabidiol interacts directly with the body’s natural endocannabinoid system. This produces a number of benefits that can help you reach your healthy body weight

Researchers found that CBD could decrease appetite while boosting metabolism at the same time. When less food is consumed and fat burn is increased, it can lead to weight loss.

Research on the link between CBD and weight loss is ongoing, and there’s still much to be learned about the relationship between cannabidiol and metabolism. If you are interested in using CBD oil as a weight loss aid, make sure to find a reputable and quality source.

For more health awareness blogs, please visit http://www.stemedix.com/blog.

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our team.

You have Successfully Subscribed!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!