by admin | Jul 19, 2023 | Mesenchymal Stem Cells, Osteoarthritis, Stem Cell Therapy
Osteoarthritis (OA) is the most common and widespread form of arthritis, affecting an estimated 655 million people worldwide. Occurring as a result of cartilage degeneration, OA is a progressive degenerative disorder that most commonly affects the joints of the hands, hips, knees, and spine.
Although OA can affect anyone, it is most commonly observed in older patients. In fact, all individuals over the age of 65 are believed to demonstrate some clinical or radiographic evidence of OA.
While surgical and pharmaceutical treatment options for OA exist as a way to manage the symptoms and progression of the disease, treatment for the restoration of normal cartilage function has yet to be achieved.
Considering the tissue of joint cartilage is composed primarily of chondrocytes found in bone marrow-derived mesenchymal stem cells (BMSCs), using these specific stem cells appears to have significant potential for use in the therapeutic regeneration of cartilage.
In this review, Gupta et al. evaluate the advances in using BMSCs and their therapeutic potential for repairing cartilage damage in OA. Evaluating current research, the authors point out that one of the key characteristics of MSCs, including BMSCs, is that they are generally hypoimmunogenic and possess immunosuppressive activity, suggesting that BMSCs could be used as allogeneic applications for cartilage repair.
Preclinical models of OA have also demonstrated that the effects of MSC transplantation have been effective for cartilage repair. Additionally, clinical models have reported on the safety and positive therapeutic effects of MNSC administration in patients with OA.
The authors point out that while the exact mechanism by which BMSCs regenerate articular cartilage in patients with OA is not clear, their ability to induce proliferation and tissue-specific differentiation appears to aid in the repair of damaged cartilage.
The ability of BMSCs to migrate and engraft onto multiple musculoskeletal tissues and differentiate at the site of injury while demonstrating anti-inflammatory and immunosuppressive properties demonstrate their potential as a therapeutic treatment for degenerative diseases like OA.
While the information provided in this review demonstrates the potential of BMSCs to support treatment and recovery from the damage caused because of OA, Gupta et al. call for additional clinical studies to assess the curative properties and long-term outcome of using MCSCs for the treatment of OA before they can be used routinely as a clinical treatment for the condition.
Source: “Mesenchymal stem cells for cartilage repair in osteoarthritis – PMC.” 9 Jul. 2012, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3580463/.
by admin | Jul 12, 2023 | Adipose, Mesenchymal Stem Cells, Regenerative Medicine, Stem Cell Therapy
Mesenchymal stem cells (MSCs) isolated from a wide variety of tissues and organs have demonstrated immunomodulatory, anti-inflammatory, and regenerative properties that contribute to a host of regenerative and immunomodulatory activities, including tissue homeostasis and tissue repair. The most frequently studied and reported sources of MSCs are those collected from bone marrow and adipose tissue.
In this review, Krawczenkjo and Klimczak focus on MSCs derived from adipose tissue (AT-MSCs) and their secretome in regeneration processes.
Adipose tissue is the most commonly used source of MSCs, primarily because it is easily accessible and is often a byproduct of cosmetic and medical procedures. Like most MSCs, AT-MSCs are able to differentiate into adipocytes, chondrocytes, and osteoblasts; they are also able to differentiate into neural cells, skeletal myocytes, cardiomyocytes, smooth muscle cells, hepatocytes, endocrine cells, and endothelial cells.
In addition, AT-MSCs secrete a broad spectrum of biologically active factors that serve as essential components involved in the therapeutic effects of MSCs, including the ability to stimulate cell proliferation, new blood vessel formation, and immunomodulatory properties; these factors include cytokines, lipid mediators, hormones, exosomes, microvesicles, and miRNA.
Preclinical and clinical studies on AT-MSCs in tissue regeneration were demonstrated to contribute to wound healing, muscle damage, nerve regeneration, bone regeneration, and lung tissue regeneration.
Evaluating these studies, Krawczenko and Aleksandra Klimczak conclude that AT-MSCs and their secretome are promising and powerful therapeutic tools in regenerative medicine, primarily due to their unique properties in supporting angiogenesis.
The results obtained by the preclinical and clinical studies evaluated for this review suggest that the ability of AT-MSCs and their derivatives, including EVs and CM, to deliver a wide range of bioactive molecules could be considered as factors supporting enhanced tissue repair and regeneration.
Source: “Exosomes in Mesenchymal Stem Cells, a New Therapeutic Strategy ….” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4308409/.
by Stemedix | Jul 3, 2023 | Traumatic Brain Injury, Stem Cell Therapy
Brain injuries resulting from car accidents can vary in severity, ranging from mild concussions to more severe traumatic brain injuries (TBIs). The symptoms experienced can also vary depending on the specific nature and extent of the injury. Here are some common symptoms associated with brain injury from a car accident:
Loss of consciousness: The person may experience a temporary loss of consciousness, ranging from a few seconds to several minutes. However, it’s important to note that loss of consciousness doesn’t always occur in every brain injury case.
Headache: Persistent or recurring headaches are a common symptom following a brain injury. The severity and frequency of the headaches can vary.
Confusion and disorientation: After a car accident, individuals may feel confused, disoriented, or have difficulty remembering events before or after the accident. They may have problems with concentration and may struggle to follow conversations or instructions.
Memory problems: Short-term or long-term memory loss can occur after a brain injury. This may involve difficulty remembering recent events, learning new information, or recalling past memories.
Dizziness and balance issues: Feeling lightheaded, dizzy, or having problems with balance and coordination are common symptoms. This may make it difficult to walk or perform everyday activities.
Nausea and vomiting: These symptoms can be a result of the injury itself or associated with dizziness and imbalance.
Sensory changes: Changes in sensory perception can occur, such as blurred vision, ringing in the ears (tinnitus), sensitivity to light or sound, or a bitter taste in the mouth.
Mood swings and emotional changes: Brain injuries can lead to emotional and behavioral changes, including irritability, depression, anxiety, mood swings, and a decreased tolerance for stress. These changes can affect personal relationships and overall well-being.
Sleep disturbances: Insomnia, excessive sleepiness, or changes in sleep patterns are common after a brain injury.
Sensation and coordination problems: Some individuals may experience numbness or tingling in the extremities, difficulties with coordination, or weakness in the muscles.
It’s important to remember that these symptoms can vary depending on the severity of the brain injury and the individual. If you or someone you know has been involved in a car accident and is experiencing any of these symptoms, it is crucial to seek medical attention immediately.
What Treatments Help for Brain Injury Recovery?
The treatment and management of a brain injury depends on its severity and the specific symptoms and complications experienced. Recovery from a brain injury can be a complex and individualized process.
In the acute phase following a brain injury, medical professionals focus on stabilizing the individual and preventing further damage. This may involve surgery to address bleeding or swelling in the brain.
Rehabilitation therapies are utilized to address specific impairments and promote recovery. These may include:
- Physical therapy: To improve mobility, strength, balance, and coordination.
- Occupational therapy: To regain skills necessary for daily activities and improve cognitive function.
- Speech and language therapy: To address communication difficulties, speech impairments, and swallowing problems.
- Cognitive rehabilitation: To enhance cognitive abilities such as memory, attention, problem-solving, and organization skills.
- Vision therapy: To address visual disturbances or impairments.
Medications may be prescribed to manage specific symptoms associated with brain injuries, such as pain, seizures, muscle spasms, depression, anxiety, or sleep disorders.
Emotional and psychological support is essential for individuals recovering from brain injuries. Counseling or therapy sessions can help individuals and their families cope with the emotional and behavioral changes that may occur.
Depending on the specific impairments, assistive devices such as mobility aids, communication devices, or memory aids may be recommended. Modifications to the home or workplace environment may also be necessary to support the individual’s recovery and independence.
Support from family, friends, and support groups can play a crucial role in the recovery process. Educational programs can help individuals and their families understand the nature of brain injuries, manage expectations, and learn strategies for coping and maximizing recovery.
Adopting a healthy lifestyle can support brain injury recovery. This may include getting sufficient rest, eating a balanced diet, engaging in regular exercise (as appropriate), and avoiding substances that could interfere with recovery, such as alcohol or certain medications.
It’s important to note that every brain injury is unique, and treatment plans should be tailored to the individual’s specific needs. A multidisciplinary team of healthcare professionals, including physicians, neurologists, therapists, and psychologists, will work together to create a comprehensive treatment plan and monitor progress throughout the recovery journey.
Can Mesenchymal Stem Cell Therapy Help in Brain Injury From Car Accident?
Mesenchymal stem cell (MSC) therapy is an area of ongoing research within the regenerative medicine field and holds promise for various medical conditions, including brain injuries. MSCs are a type of adult stem cell that can be derived from different sources, such as bone marrow, adipose tissue (fat), or umbilical cord tissue.
Preclinical studies and early clinical trials suggest that MSC therapy may have potential benefits in brain injury repair. Here are some ways in which MSC therapy might help:
Anti-inflammatory effects:
MSCs have immunomodulatory properties, meaning they can regulate the immune response and reduce inflammation. In brain injuries, inflammation plays a significant role in secondary damage. MSCs have been shown to decrease inflammation in animal models of brain injury, potentially promoting a more favorable environment for healing.
Neuroprotective effects:
MSCs may secrete various factors that have protective effects on brain cells. These factors can enhance cell survival, promote tissue repair, and stimulate the growth and differentiation of new neurons. Additionally, MSCs may have antioxidant properties, helping to reduce oxidative stress, which can be harmful to brain cells.
Modulation of scar formation:
Following a brain injury, scar tissue formation can impede the regeneration and repair process. MSCs may modulate scar formation by reducing the deposition of scar tissue components and promoting tissue remodeling.
Promotion of angiogenesis:
MSCs have the potential to stimulate the formation of new blood vessels (angiogenesis). This can enhance blood flow to the injured brain tissue, delivering oxygen and nutrients, which are essential for the healing process.Early results of MSC therapy for brain injuries are promising and the field of regenerative medicine is ongoing with its research. It’s always advisable to consult with healthcare professionals and experts in the field to discuss potential treatment options for brain injuries. If you are interested in learning more about the symptoms of Brain Injury From a Car Accident, contact a care coordinator today from Stemedix!
by admin | Jun 28, 2023 | Mesenchymal Stem Cells, Stem Cell Research, Stem Cell Therapy
Cigarette smoking continues to be the leading contributor to preventable disease and death in the United States, including cancer, heart disease, stroke, lung diseases, diabetes, and chronic obstructive pulmonary disease (COPD). Smoking cigarettes also increases the risk of tuberculosis, certain eye diseases, and problems of the immune system, including rheumatoid arthritis.
An abundance of clinical research has clearly shown the detrimental effects cigarette smoke has on nearly every area of the body. However, while assumed to be equally dangerous in its effect on stem cells, there is surprisingly little research exploring the negative implications of cigarette smoking on stem cells.
In this review, Nguyen et al. share findings of recent studies on the effects of cigarette smoking and nicotine on mesenchymal stem cells (MSCs), with a specific focus on dental stem cells.
With their ability to self-renew, develop into specialized cell types, and migrate to potential sites of injury, stem cells have demonstrated the potential to build every tissue in the body and have also demonstrated great potential for tissue regeneration and associated therapeutic uses.
As the potential benefits and weaknesses of stem cells continue to be discovered, researchers have found that cigarette smoking negatively impacts the abilities of stem cells while also limiting stem cell viability for transplantation and regeneration.
While there has been a recent decline in the percentage of U.S. adults who smoke, over 34 million U.S. adults continue to be regular cigarette smokers. Interestingly, research has demonstrated the concentration of nicotine to be significantly higher in saliva than in blood plasma following nicotine administration via cigarette, e-cigarette, and nicotine patch – in some cases measuring up to eight times higher concentrations. Considering this research and considering the established detrimental effects of e-cigarette vapor – and presumably nicotine – on teeth and dental implants, the authors of this review hypothesized that there would be a similar effect when dental stem cells are exposed to cigarette smoke.
Reviewing the effect that cigarette smoke has on MSCs, the authors found that exposing MSCs to cigarette smoke extract (CSE) and nicotine impaired cell migration, increased early and late osteogenic differentiation markers, decreased cell proliferation, and significantly inhibited the ability of MSCs to differentiate to other types of cells.
Nguyen et al. reviewed research that determined cigarette smoke produced a negative impact on the proliferation and differentiation of dental pulp stem cells (DPSCs). Specifically, this research demonstrated a significantly higher depression of alkaline phosphatase (ALP) and osteocalcin (OC) genes in smokers when compared to nonsmokers. Additional studies found that smokers demonstrated reduced calcium deposition levels and production of ALP when compared to nonsmokers.
Cigarette smoke and nicotine were also found to negatively affect the migration capability of dental stem cells, slowing the migration rate by up to 12% in smokers while also producing a smaller reduction of scratch wound areas when compared to nonsmokers.
While there are not many studies directly comparing the effects of cigarette smoke and nicotine on MSCs and dental stem cells, the authors conclude that dental stem cells exhibit similar characteristics to bone marrow MSCs and that both of these types of stem cells demonstrate similar negative responses upon their exposure to nicotine.
While the authors call for further research to better understand the specific effects of cigarette smoke on dental stem cells, the authors conclude that the findings demonstrating similar responses to cigarette smoke and nicotine between dental stem cells and MSCs can be used to inform future dental stem cell studies. These findings will help dentists better identify which patients might be at an increased risk of poor healing in the oral cavity and if smoking cessation should be considered before undergoing any invasive or traumatic dental procedure, such as tooth extraction.
Source: Comparison of the effect of cigarette smoke on mesenchymal stem ….” https://journals.physiology.org/doi/10.1152/ajpcell.00217.2020.
by admin | Jun 21, 2023 | Stem Cell Therapy, Regenerative Medicine, Stroke
Recent advances in medical accessibility, technology, and treatment have increased the average human life expectancy, while at the same time, increasing the risk for neurodegenerative diseases and other disorders – including stroke.
According to the CDC, nearly 800,000 people in the United States suffer a stroke each year, with 87% of these strokes being ischemic strokes. An ischemic stroke is a medical emergency that occurs when the blood supply to part of the brain is reduced or interrupted. Without the ability to deliver oxygen or nutrients, brain cells begin to die in a matter of minutes.
Even when identified and treated early, the lasting, long-term effects associated with stroke result in economic and social costs for patients, their families, and society in general. As an example, the CDC estimates that stroke-related costs, including those associated with healthcare and missed days of work, exceed $50 billion dollars in the U.S. each year.
While medical research continues to search for ways to prevent stroke by addressing underlying causes, primary stroke treatment continues to focus on managing stroke progression while also treating related symptoms.
Recently regenerative medicine, also known as stem cell therapy, along with rehabilitation therapy has been presented as an effective stroke treatment. In this review, Berlet, et al. explore the potential synergistic outcomes of stroke treatment observed when combining current advances in stem cell research with known stroke rehabilitation strategies. The authors also review research while considering the advantages and disadvantages of using the combination of stem cell transplantation and rehabilitation as a way to mitigate the devastating effects of stroke.
Combining stem cell treatment with rehabilitation therapy and outside strategies, such as an enriched environment (EE) may enhance functional stroke recovery and allow for an ideal long-term therapy for stroke patients. With the goal of enhanced brain plasticity, these therapies aim to introduce intrinsic or extrinsic stimuli to assist with the reorganization of the brain’s structure, functions, and connections.
The human brain has been demonstrated to be more plastic after experiencing an injury. With EE promoting improved stem cell survival and migration, and stem cell therapy creating the potential for an extended window of treatment, the combination is viewed as a potentially effective therapy when combined.
Preclinical experimentation has demonstrated stem cell therapies to be effective days after an ischemic stroke occurs, providing a very important window of time for critical stroke treatment to occur. While this is certainly promising information, the authors also point out that there has been a disappointing and frustrating disconnect between these preclinical findings and what is observed in clinical experimentation.
Considering this, the authors identify determining the optimal clinical stem cell route of administration, dosage, and timing as key areas of study to better understand – and maximize – the therapeutic potential of stem cells in the treatment of ischemic stroke.
While Berlet et al. calls for additional research into the ideal route of stem cell administration, type dosage, and timing to further confirm the efficacy of stem cell transplantation for the treatment of ischemic stroke, the authors conclude that the addition of stem cell therapy to rehabilitation has significant potential to create a conducive host microenvironment to facilitate the repair process.
Source: “Combination of Stem Cells and Rehabilitation Therapies for … – NCBI.” 6 Sep. 2021, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8468342/.
by admin | Jun 14, 2023 | Stem Cell Therapy, COPD, Regenerative Medicine
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory lung disease that causes obstructed airflow from the lungs. Affecting an estimated 15 million people in the United States alone, COPD is characterized by progressively worsening symptoms, including breathing difficulty, cough, mucus (sputum) production, and wheezing, and is most often the result of prolonged exposure to cigarette smoke.
Not just an issue for those in the U.S., COPD has been demonstrated to be a preventable and treatable global health challenge. With an estimated 3.5 million worldwide deaths attributed to COPD each year, the disease is currently the third leading cause of death.
While there have been medical advances in the treatment of COPD, these therapies focus primarily on symptomatic relief and not the reversal of lung function deterioration or improvement in patients’ quality of life.
Since stem cells are known to differentiate into a wide variety of cell types and have been previously used to regenerate lung parenchyma and airway structure, they are believed to be an evolving and promising therapeutic treatment option for those with COPD.
Supported by extensive studies exploring the mechanism of stem cells in the regulation of COPD, experts have demonstrated that stem cells possess multidirectional differentiation potential and are able to differentiate into specific forms of alveolar epithelial cells (type I and/or type II) and participate into the repair of lung tissue structure.
In this review, Chen et al. summarize the most relevant findings of eight clinical trials that explore the treatment of COPD with mesenchymal stem cells (MSCs).
These clinical trials, conducted between the years of 2009 – 2020, examined using different modes and doses of a variety of autologous or allogeneic MSCs, including bone marrow-derived stem cells (BM-MSCs), adipose tissue-derived stem cells (AD-MSCs), and umbilical cord-derived stem cells (UC-MSCs), in the treatment of COPD.
Examining the different types of MSCs used for these clinical trials, the authors conclude that while all types of MSCs have benefits in this application, AD-MSCs and UC-MSCs are very promising, primarily because the source is easily available; additionally, the process of collecting UC-MSCs is non-invasive. Looking at trends in recent clinical trials, the authors find a general increase in the shift toward using AD-MSCS and UC-MSCs and away from BM-MSCs, primarily for the reasons mentioned previously.
Analyzing results of these clinical trials related to mode, schedule, and dosage of administration, the authors found that stem cells administered intravenously into the body concentrated in the lungs for thirty minutes before gradually migrating to the liver; the inability of stem cells to keep stem cells in the lungs for a longer period of time was noted as a potential barrier that could limit the effectiveness of stem cell therapy for this condition.
To address this concern, the authors recommend adjusting the schedule and/or mode of administration, indicating that prior research suggests multiple doses and administration via airway injection using a bronchoscope is a good way to deliver stem cells directly to the lungs.
Chen et al. found that regardless of what type of MSCs and what mode of administration was used, stem cell therapy for the management of COPD has been proven to be safe and without evidence of any adverse events. However, only 2 of the eight clinical trials evaluated for this review demonstrated that MSCs could improve pulmonary function. The results of the other six indicated that MSCs had no effect on pulmonary function.
Considering these findings, and in view of the small number of patients in the two clinical trials demonstrating therapeutic improvement on pulmonary function, the authors call for further research to better understand the effects of MSCs on improvements of pulmonary function.
In closing, Chen et al. indicate that stem cell therapy may have a significant role in the future treatment of COPD and other respiratory diseases and offer a number of suggestions for future clinical trials. The recommendations provided by the authors for future clinical trials examining the therapeutic effects of MSCs when treating COPD include expanding the sample size, extending the follow-up time to a minimum of 2 years, selecting patients with different grades of COPD, considering using AD-MSCs and UC-MSCs (rather than BM-MSCs); and further exploring the effects of MSC on change in other inflammatory, immune, and metabolic indicators.
Source: “Stem cell therapy for chronic obstructive pulmonary disease – PMC.” 15 Jun. 2021, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8280064/.