Stem Cells Show Alzheimer’s Disease Prevention & Therapy

Stem Cells Show Alzheimer’s Disease Prevention & Therapy

In recent years, stem cells have continued to show promise for helping combat a host of diseases, many of which relate to the brain. A recent study by Yoo-Hun Suh and colleagues has demonstrated that a specific type of stem cell could help with both the prevention and treatment of the neurodegenerative disease, Alzheimer’s.

Patients with Alzheimer’s disease lose a significant number of brain cells as a result of the disease, and the resulting damage to brain tissue is associated with cognitive and behavioral symptoms. The disease is best known for causing significant memory difficulties in its sufferers. Because stem cells offer a way to introduce new cells into the organ, they are obvious candidates for Alzheimer’s therapy.

In the current study, published in PLOS One, the researchers set out to determine if they could overcome the technical difficulty of implanting human adipose-derived stem cells into the brain and, if so, whether these cells could improve the symptoms and the physical hallmarks of Alzheimer’s disease.

The researchers achieved a number of notable results. First, they showed that the stem cells were able to penetrate the blood-brain barrier and migrate into the brain. Second, they demonstrated that a number of symptoms associated with Alzheimer’s disease improved with the administration of stem cells in a model of Alzheimer’s disease. Specifically, learning and memory deficits were reversed. Finally, the scientists found that the administration of stem cells was associated with reductions in the physiological markers of Alzheimer’s disease – namely, the amyloid plaques in the brain that are a signature of the disease, as well as the protein that contributes to these plaques, called A. The researchers conclude that the stem cells may help with the therapy of Alzheimer’s and could potentially help with prevention as well.

That one study could achieve a technical proof-of-concept of administering the stem cells to the brain while also simultaneously demonstrating an improvement in symptoms and physiology associated with Alzheimer’s disease is incredible in terms of the potential for stem cells in aid in the therapeutic interventions of this disease.

Learn more about stem cell therapy for Alzheimer’s disease here.

 

Reference

Kim, S. et al. (2012). The preventive and therapeutic effects of intravenous human adipose-derived stem cells in Alzheimer’s disease mice. PLOS One, 7(9), e45757.

Long Term Study Shows Stem Cell Transplantation Helping Patients with Multiple Sclerosis

Long Term Study Shows Stem Cell Transplantation Helping Patients with Multiple Sclerosis

At 6 months post-treatment, neurological improvement or stabilization was observed from all (99) patients in the study except one.

In their recently published study, Long-term outcomes of autologous hematopoietic stem cell transplantation with reduced-intensity conditioning in multiple sclerosis: physician’s and patient’s perspectives, published in the Annals of Hematology Journal, Shevchenko et al. describe the effects of an autologous hematopoietic stem cell transplantation (AHSCT) with high-dose immunosuppressive therapy (HDIT) on 99 patients with multiple sclerosis. That the stem cell transplantation is autologous means that the stem cells derive from the patient’s own body, and the stem cells being hematopoietic indicates that the stem cells give rise to blood cells.

The idea for this type of therapy for multiple sclerosis has stemmed from the fact that multiple sclerosis is characterized by nervous system inflammation. Because inflammation results from activities of the immune system, it has been thought that targeting the immune system to reduce its activity could improve symptoms of the disease. More specifically, this particular combination therapy, using AHSCT and HDIT, has been aimed at destroying the immune system and rebuilding a separate system from hematopoietic stem cells so that the new immune system functions more favorably in those with multiple sclerosis.

AHSCT and HDIT have been used in the treatment of multiple sclerosis for several years, but the specific way these techniques are able to improve multiple sclerosis is not well understood. Further, there is some debate about both the safety and effectiveness of these treatments. Small sample sizes and homogeneous patient groups have plagued many of the studies performed to address these issues. In the present study, however, the researchers studied patients with different types of multiple sclerosis. This experimental structure allowed the scientists to show that AHSCT and HDIT used in combination can help those with both remitting and progressive multiple sclerosis and that the positive effects on the disease appeared to endure over long-term periods. At 6 months post-treatment, neurological improvement or stabilization was observed from all (99) patients in the study except one. The average follow up time for patients was 62 months, or just over 5 years, and up to and at this point, 47% of patients demonstrated significant improvement jumping at least 0.5 points on the Expanded Disability Status Scale EDSS scale. These results are highly informative for physicians treating patients with multiple sclerosis and are a promising demonstration of the potential for stem cells to improve conditions like multiple sclerosis.

Learn more about stem cell therapy for Multiple Sclerosis.

 

  • Reference
    • Shevchenko, J. L., et al. “Long-term outcomes of autologous hematopoietic stem cell transplantation with reduced-intensity conditioning in multiple sclerosis: physician’s and patient’s perspectives.” Annals of hematology 94.7 (2015): 1149.

  • Study Abstract
New Study Shows Adipose Derived Stem Cells Reversing Negative Effects of Parkinson’s Disease

New Study Shows Adipose Derived Stem Cells Reversing Negative Effects of Parkinson’s Disease

Earlier this year, a group of scientists led by Yoo-Hun Suh at the Seoul National University Medical College published their work demonstrating the potential use of human adipose-derived stem cells (hASC‘s) in Parkinson’s therapy. Their article, Therapeutic potentials of human adipose-derived stem cells on the mouse model of Parkinson’s disease, was published in the academic journal Neurobiology of Aging.

Many Parkinson’s disease treatments aim to compensate for the loss of dopamine that is seen in the brains of Parkinson’s patients, but because those treatments have their limitations, focus has shifted to the use of stem cells as a therapeutic option for Parkinson’s disease. The rise in stem cell research for Parkinson’s disease has also increased as scientists have recognized the importance of mitochondrial deterioration in the development of Parkinson’s disease.

Stem cells that can be easily transplanted and readily proliferate are seen as ideal stem cell candidates for such treatments. hASC are pluripotent, meaning they can differentiate into a number of different types of cells, including cells that resemble neurons, the cells of the brain. These particular stem cells are useful because they tend not to create a reaction by the immune system, and they can pass the blood-brain barrier and proliferate within the brain.

In this study, the researchers used a common mouse model of Parkinson’s disease, which is created with a specific neurotoxin called 6-hydroxydopamine (6-OHDA). They injected hASC into the veins of mice and assessed how these stem cells affected Parkinson’s disease symptoms, dopamine levels in the striatum, the part of the brain affected by Parkinson’s disease, and the integrity of mitochondria.

The researchers found that hASC improved the motor deficits in the mice modeled to display Parkinson’s disease symptoms. Using positron emission tomography (PET) imaging, the researchers also showed increased dopamine levels in the striatum of these mice. Finally, the researchers also showed that mitochondrial function was restored in mice who received hASC injections.

Overall, this study captures the significant potential of hASC to provide successful therapies for neurodegenerative disorders like Parkinson’s disease. That the injection of these cells in a mouse model of Parkinson’s led to both behavioral and physiological improvements in mice demonstrates the great promise for stem cell therapies, and in this context, particularly for therapies developed from adipose-derived stem cells.

Learn more about stem cell treatment for Parkinson’s disease.

 

Reference

Choi, H., Kim, H., Oh, J., Park, H., Ra, J., Chang, K., & Suh, Y. (2015). Therapeutic potentials of human adipose-derived stem cells on the mouse model of Parkinson’s disease. Neurobiology of Aging, 36(10), 2885-2892.

Doctors Using Adipose Stem Cells for Brain Injury

Doctors Using Adipose Stem Cells for Brain Injury

In their article, Neurogenic differentiation of murine and human adipose-derived stromal cells, Kristine Safford and colleagues provide evidence for a new candidate for brain therapies. Much of our body’s tissue is able to regenerate to repair itself following injury. However, brain tissue, or neural tissue, does not have this capacity. It has therefore been a priority for medical researchers to identify strategies for repairing damaged brain tissue.

Certain cells, such as embryonic stem cells, can be treated so that they turn into brain cells. However, because it is difficult to access these types of cells, there has been an ongoing search for other ways to create neural tissue for therapeutic purposes. In this publication, the researchers share their finding that fat tissue, or adipose tissue, from adults, may be able to serve this function. Here, the researchers demonstrate that they were able to induce adipose-derived stem cells to undergo alterations that resulted in cells resembling brain cells, or neurons. The researchers were able to change both the shape and chemical features of adipose-derived stem cells so that these aspects of the cells were consistent with those of normal neurons.

This study provides a new therapeutic candidate for brain injury. Ongoing research that aims to determine whether adipose-derived stem cells can be used to develop mature neurons that function appropriately as neurons will clarify whether adipose-derived stem cells will indeed eventually be able to be used to treat specific brain injuries or abnormalities.

Learn more about treating brain disorders with stem cells.

Source

Safford, K.M. et al. Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem. Biophys. Res. Commun. 294, 371-379

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our team.

You have Successfully Subscribed!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!