by admin | Dec 3, 2020 | Exosomes, Mesenchymal Stem Cells, Stem Cell Research, Stem Cell Therapy, Stroke
Promising early research shows that when introduced into a brain injured by stroke, extracellular vesicles (EVs), also known as exosomes, a bioactive substance secreted by mesenchymal stem cells, have been associated with improved blood vessels creation, increased formation of neurons, and enhanced preservation of the neurological structure; these findings demonstrate a promising stem cell-derived stroke therapy that serves as an alternative approach to current stem cell infusion treatment options.
With nearly 14 million people suffering strokes each year, strokes continue to be the leading cause of physical disability among adults; between 25 percent and 50 percent of stroke survivors are left with significant and debilitating disabilities.
Because mesenchymal stem cells, or MSCs, secrete extracellular vesicles thought to reduce inflammation, enhance autophagy, and promote regeneration of damaged cells, researchers evaluating potential regenerative strategies for stroke-induced neurologic deficits have identified these MSC-derived EVs as a viable option for stroke therapy.
Although the reported beneficial effects of EV therapy has been observed in studies completed on animals, there is an increasing number of clinical studies currently being conducted on humans that suggest MSC EV stem cell therapy is a potentially safe and effective therapeutic option to improve outcomes in several various human applications.
Specifically, this EV-mediated therapy appears to offer an off-the-shelf treatment option that is potentially effective in crossing the blood-brain-barrier (BBB) while also avoiding cell-related problems, including the formation of tumors and infarcts resulting from vascular occlusions, or blood clots, consistent with those observed in acute ischemic stroke.
While there appears to be a promising upside to MSC EV therapy for the treatment of stroke, studies are on-going to discover the optimal therapeutic treatment of stroke patients. Some areas to continue researching are the optimal time and best mode of application of EVs in stroke patients (most stroke-related recovery occurs in the first few months following the stroke).
As research continues into the effectiveness of MSC-EV therapy for stroke, early indications are that EVs derived from mesenchymal stem cells could be a viable cell-free treatment option for patients recovering from a severe stroke.
Source: (2019, March 12). Mesenchymal Stem Cell-Derived Extracellular Vesicle …. Retrieved December 4, 2020, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6422999/
by admin | Nov 12, 2020 | COPD, Stem Cell Therapy
Several recent studies have shown that adult stem cells, and specifically mesenchymal stem cells (MSC), appear to support the regeneration and protection of lung tissue, making them a very promising potential next-generation therapy option for the treatment of COPD.
Known treatments for COPD are designed to address symptoms and not the actual cause of the condition; considering that COPD continues to be among the leading causes of death among developed countries and that it’s considered to be a preventable and treatable disease there is a clear and compelling need to develop more effective therapeutic strategies.
As COPD develops, its inflammatory properties are characterized by the death of the epithelial cells, loss of the terminal air-space within the lung, and ongoing breakdown of lung tissue responsible for stability, elastic recoil, and other physiological functions essential for respiration.
Since the damage to these cells is permanent and not repairable, researchers continue to explore the use of MSCs as a potential option to repair and restore lung structure and lung function in people living with COPD.
Currently, any therapeutic-based COPD treatment option relies on the continued use of bronchodilators and/or corticosteroids to reduce the symptoms of COPD. While both of these drugs have been able to slow the worsening of COPD symptoms, the benefits appear to be ineffective as a long-term treatment option for even mild to moderate COPD.
Because of their capacity to induce growth of skeletal muscle cells, blood, fat, vascular systems, and connective tissues throughout the body, and since they seemingly have a capacity for self-renewal, MSCs are now being considered as a therapeutic treatment option for COPD.
In addition to their versatility throughout various cells, tissues, and systems, MSCs are relatively simple to isolate, they expand with high efficiency, are easily able to be processed and transported from the lab setting to point-of-use, and are highly compatible with different delivery methods and formulations currently being used by medical professionals.
Early research has also demonstrated that MSCs possess powerful immunosuppressive properties and are easily able to seek out and migrate to specific sites of tissue injury; this appears to be especially promising in the tissue of the lungs where not only have MSCs demonstrated the ability to suppress inflammation and growth factor production but also been found to reduce fluid retention within the lungs.
While these findings are promising, Phase II clinical trials to establish the use of Mesenchymal stem cells as a therapeutic treatment in patients with severe COPD are currently ongoing. Specifically, this trial is examining how effective MSCs derived from normal healthy adult donors in the treatment of COPD.
Although further study is required, early indications show promise that stem cell therapy, and specifically the use of MSCs, could be a very effective therapeutic treatment option in patients with moderate to severe COPD.
Reference: (n.d.). Mesenchymal stem cell therapy for the treatment of … – PubMed. Retrieved November 25, 2020, from https://pubmed.ncbi.nlm.nih.gov/20384521
by admin | Nov 11, 2020 | Pulmonary Fibrosis, Mesenchymal Stem Cells, Stem Cell Therapy
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive disease of the lungs that causes fibrosis of the spaces between the air sacs. As the fibrosis gets progressively worse, the movement of the lungs is more and more restricted. In effect, patients with IPF find it harder and harder to breathe. Patients become short of breath almost constantly.
The “idiopathic” part of idiopathic pulmonary fibrosis means that the cause is unknown. We know that it mainly occurs in older people, usually to people between the ages of 55 and 75—but we don’t know why.
Eventually, most people with IPF will need supplemental oxygen for all activities. Supplemental oxygen may delay some of the consequences of IPF (e.g. pulmonary hypertension), but it is mostly used to help patients breathe more easily and get more oxygen into the blood.
Two antifibrotic drugs, nintedanib, and pirfenidone are approved for the treatment of patients with idiopathic pulmonary fibrosis. In some patients with mild to moderate disease, these drugs can delay the progression of IPF for weeks to months. Both drugs are associated with significant side effects and patients may stop taking them because of these adverse events. Even if patients can tolerate the drugs, they do not repair or rebuild lung tissue, so they only help to slow the progression.
Scientists have suggested an alternate approach; one in which an antifibrotic drug is given alongside a treatment intended to regenerate the lung tissue, namely, mesenchymal stem cells. They persuasively argue that mesenchymal stem cells can regulate the immune system by reducing the inflammation that occurs in idiopathic pulmonary fibrosis. Stem cells also differentiate into functional alveolar cells, i.e., the cells that are part of air sacs. Perhaps more impressively, bone marrow-derived stem cells had the same short-term therapeutic benefits as pirfenidone in mice with experimental IPF.
The authors do not advocate that stem cells should be used to replace the antifibrotic drugs, nintedanib, and pirfenidone, but they do suggest that stem cell treatment could be useful in combination with one of these drugs. They theorize that the antifibrotic drug can reduce symptoms, but the stem cell treatment may help also reduce symptoms but also slow down, stop, or even reverse the progression of the disease. More clinical work is needed, but since IPF is a terrible disease with no cure, that work will hopefully be done quite soon.
Reference: Chuang, Hong-Meng, et al. (2018). Mesenchymal Stem Cell Therapy of Pulmonary Fibrosis Improvement with Target Combination. Cell Transplantation. 2018; Vol. 27(11) 1581-1587.
by admin | Nov 7, 2020 | Osteoarthritis, Mesenchymal Stem Cells, Stem Cell Research, Stem Cell Therapy
Osteoarthritis is the most common form of arthritis. In osteoarthritis, the cartilage of the joints breaks down, bone spurs form, the synovial linings become inflamed, and the ligaments around the joint calcify. All of these pathological changes combine to cause joint pain, swelling, and stiffness. The breakdown of the joint also means that it does not function properly. The arthritic joint may “lock up,” “give out,” or simply not be able to move through its normal range of motion. Early in the disease, the pain of osteoarthritis may be brought on by movement. Later, the pain is more or less constant with severe pain flares.
Initially, the treatment for osteoarthritis is pain medications, exercise, braces, and physical therapy. Joint injections may be helpful for 4 to 6 weeks, but recent research suggests that repeated steroid injections may break down cartilage and speed up joint destruction. Unlike treatments for rheumatoid arthritis, there are no disease-modifying treatments for osteoarthritis. The disease tends to get worse over time until surgery is required. Joint replacement surgery is usually the treatment of last resort.
Since osteoarthritis is a degenerative joint disease, a reasonable approach to therapy is to try to rebuild or regenerate the joint tissues. This would not only stop the disease progression of osteoarthritis but perhaps even heal the damaged joint. For this reason, regenerative medicine, also known as stem cell therapy, is drawing the attention of many scientists who are looking for alternative therapeutic treatments for osteoarthritis.
Researchers tested the ability of mesenchymal stem cells to relieve pain and treat the damage of osteoarthritis. More specifically, they used the exosomes that the mesenchymal stem cells produce. Exosomes are tiny packets of substances like RNA and peptides that support tissue growth and repair. Exosomes contain most of the molecules that make mesenchymal stem cells helpful.
The scientists found that giving exosomes from mesenchymal stem cells to animal subjects with experimental osteoarthritis had some remarkable effects. Not only did the stem cell-derived treatment substantially reduce pain in the rats with osteoarthritis, but microscopic and molecular evidence also showed that the exosomes were able to repair cartilage in the affected joints. This is truly impressive when you consider that other treatments for osteoarthritis only reduce symptoms—they do not repair cartilage or stop the progression of the disease.
While this work will need to be replicated in human clinical studies (and that work has already begun), this is an exciting finding for the millions of Americans who struggle with osteoarthritis.
Reference: He, L., He, T., Xing, J. et al. Bone marrow mesenchymal stem cell-derived exosomes protect cartilage damage and relieve knee osteoarthritis pain in a rat model of osteoarthritis. Stem Cell Res Ther 11, 276 (2020). https://doi.org/10.1186/s13287-020-01781-w
by admin | Sep 16, 2020 | Mesenchymal Stem Cells, Rheumatoid Arthritis, Stem Cell Therapy
Rheumatoid arthritis causes chronic inflammation of multiple joints throughout the body. This joint inflammation eventually causes the cartilage and bone to break down, and the tendons and ligaments surrounding the joints stretch and become deformed. Consequently, people with rheumatoid arthritis experience pain and loss of function in affected joints.
Unfortunately, rheumatoid arthritis is not just a disease of joints. Rheumatoid arthritis also causes systemic inflammation. People with rheumatoid arthritis commonly experienced fevers, weight loss, and chronic fatigue. Many patients report being achy or stiff apart from joints directly affected by arthritis. Rheumatoid arthritis can cause bone loss, muscle weakness, skin lesions, and kidney disease. Patients may also experience lung, heart, and vascular diseases.
The cause of rheumatoid arthritis is unknown; however, since it is an inflammatory disease, the main treatment for rheumatoid arthritis is an anti-inflammatory medication. Some lifestyle changes may help to ease some of the symptoms but most physicians initially recommend using a disease-modifying antirheumatic drug or DMARD soon after rheumatoid arthritis is diagnosed. DMARDs can modestly reduce symptoms of rheumatoid arthritis and help reduce the risk of patients developing debilitating joint abnormalities. DMARDs include drugs such as methotrexate or biologics such as infliximab or tofacitinib. Patients with rheumatoid arthritis usually also must take glucocorticoids, i.e. steroids to acutely control inflammation. Unfortunately, these agents have considerable side effects, especially when taken for long periods of time. Moreover, the treatments are not curative. As such, researchers are still looking for better treatments for rheumatoid arthritis.
Scientists recently conducted a prospective Phase 1/2 study of umbilical cord mesenchymal stem cells in patients with rheumatoid arthritis. They selected 64 patients with rheumatoid arthritis between the ages of 18 and 64. Volunteers received an intravenous infusion of mesenchymal stem cells and were followed for three years. At both the 1 and 3 years follow up appointments, the rheumatoid arthritis patients treated with mesenchymal stem cells had substantially lower levels of the blood markers that indicate rheumatoid arthritis (namely C-reactive protein, elevated erythrocyte sedimentation rate, rheumatoid factor, and anti-CCP antibody). The test of physical function also significantly improved at 1 and 3 years after stem cell treatment [Health Index (HAQ) and Joint Function Index (DAS28)]. The treatment was also safe, and no serious adverse effects were reported.
The results of this stem cell clinical trial are particularly remarkable because patients received only one intravenous treatment and enjoyed at least three years of improvement in their disease both in the blood markers but also in symptoms and physical functioning. Although not a cure, this study shows the apparent safety of mesenchymal stem cell treatment and the impressive benefits to allow patients to consider researching stem cell therapy as an alternative option for their rheumatoid arthritis symptom management. Indeed, if additional larger studies confirm these impressive results, umbilical cord mesenchymal stem cell treatment may become a possible standard of care in the treatment of rheumatoid arthritis in the future.
Reference: Wang L, Huang S, Li S, et al. Efficacy and Safety of Umbilical Cord Mesenchymal Stem Cell Therapy for Rheumatoid Arthritis Patients: A Prospective Phase I/II Study. Drug Des Devel Ther. 2019;13:4331-4340. Published 2019 Dec 19. doi:10.2147/DDDT.S225613