The Science Behind Stem Cell Treatments for Multiple Sclerosis: How It Works and What to Expect

The Science Behind Stem Cell Treatments for Multiple Sclerosis: How It Works and What to Expect

Multiple sclerosis (MS) is a progressive neurological condition that affects millions of people worldwide. As this autoimmune disease disrupts the central nervous system, it leads to symptoms such as muscle weakness, numbness, and cognitive issues. In recent years, stem cell therapy has emerged as a promising treatment to alleviate these symptoms and potentially slow the progression of the disease.

At Stemedix, we recognize the challenges that MS patients face, particularly as the disease advances. We are dedicated to exploring stem cell treatments for multiple sclerosis as a potential solution. Stem cell therapy offers new hope by targeting the underlying causes of MS, especially the destruction of myelin—the protective sheath around nerve fibers. Myelin loss disrupts communication between the brain and the body, contributing to MS symptoms. Stem cells have the unique ability to regenerate damaged tissues, reduce inflammation, and modulate the immune system, which is critical in autoimmune diseases like MS.

Stem cell treatments for multiple sclerosis aim to restore function and slow the disease’s progression. Whether you’re experiencing early warning signs of multiple sclerosis, such as unexplained fatigue, numbness, or vision problems, or have been living with the disease for some time, stem cell therapy could offer a pathway to managing symptoms and improving your quality of life. In this article, we will explore how stem cell therapy for MS works, the scientific mechanisms behind it, and what you can expect from the treatment process. At Stemedix, we’re committed to helping you understand how stem cell treatments can make a difference in your journey with MS.

Stem Cell Therapy: A Game Changer for MS Treatment

Stem cell therapy offers a new approach to treating multiple sclerosis (MS), offering hope for many individuals living with this challenging condition. Understanding stem cells and their unique capabilities is essential in recognizing how stem cell therapy can be a powerful tool in MS treatment.

What Are Stem Cells?

Mesenchymal stem cells (MSC’s) are unique cells with the remarkable ability to transform into different cell types in the body. Known for their regenerative properties, they serve as the building blocks of life. In multiple sclerosis, stem cells can repair damaged tissues, including nerve cells affected by the disease. Unlike other cell types, stem cells are undifferentiated, meaning they can develop into specialized cells, such as those needed to regenerate the myelin sheath—the protective covering around nerve fibers often damaged in MS. While other treatments primarily manage symptoms or inflammation, stem cell therapy works to repair the underlying damage to the nervous system, making it a vital tool in regenerative medicine focused on healing rather than just symptom control.

Specialty Stem Cells in Multiple Sclerosis Treatment

Stem cell therapy for Multiple Sclerosis not only focuses on reducing inflammation but also on regenerating and repairing nerve damage. Certain specialized stem cells play an important role in this process:

Neural Stem Cells (NSCs): These cells have the potential to develop into various types of nerve cells, supporting the repair of damaged neurons and promoting neuroprotection. They may help restore function by replacing lost or injured nerve cells in MS patients.

Oligodendrocyte Precursor Cells (OPCs): Oligodendrocytes are responsible for producing myelin, the protective sheath around nerve fibers that is damaged in MS. Stem cell-derived OPCs aim to restore myelin, improving nerve function and slowing disease progression.

Schwann Cells: While primarily associated with the peripheral nervous system, Schwann cells play a role in myelin regeneration and nerve repair. Their regenerative properties make them an important consideration for supporting neural function in MS patients.

By incorporating these specialized stem cells into treatment strategies, regenerative medicine aims to go beyond symptom management and actively promote nerve repair and functional recovery. Stemedix continues to provide therapies informed by the latest research in stem cell applications for MS.

How Stem Cells Can Help MS Patients

Multiple sclerosis (MS) occurs when the immune system attacks the myelin, disrupting communication between the brain and the body. This leads to symptoms like numbness, muscle weakness, and cognitive challenges. Stem cells have the unique ability to regenerate the myelin sheath, repairing this damage. A key benefit of stem cells is their ability to reduce inflammation, which is central to the ongoing nerve damage in MS. By modulating the immune response, stem cells help control inflammation, providing symptom relief and potentially slowing disease progression. Stem cells may aid in regenerating damaged nerve cells and improving mobility, coordination, and cognitive function, making them a promising treatment option for MS.

At Stemedix, we recognize the challenges that come with MS, and we are committed to providing personalized stem cell treatments designed to address the root causes of the disease. Our goal is to offer a pathway to improved quality of life, aiming to slow the progression of MS and provide patients with the relief they need. If you’re considering stem cell therapy for MS, Stemedix is here to guide you every step of the way.

The Scientific Mechanisms Behind Stem Cell Treatments for MS

Stem cell therapy has become one of the most promising approaches to treating multiple sclerosis (MS). By targeting the underlying causes of the disease, stem cells offer a potential solution for repairing damage to the nervous system and improving overall function. Understanding the scientific mechanisms behind stem cell treatments can provide greater clarity on how these therapies work and why they hold so much potential for MS patients.

How Stem Cells Repair Damaged Myelin

Myelin is the protective covering around nerve fibers in the central nervous system, and its destruction is a key characteristic of multiple sclerosis (MS). When myelin is damaged, nerve signals cannot travel properly, resulting in symptoms like muscle weakness, numbness, and cognitive issues. 

Stem cells can help regenerate myelin by transforming into oligodendrocyte precursor cells (OPCs), which produce new myelin. This regeneration improves nerve signal transmission and enhances overall function. Research, including animal models and early human trials, has shown promising results, with stem cell therapy leading to myelin repair and functional recovery. While still considered an emerging treatment, stem cell therapy’s potential to repair myelin offers hope for reducing MS symptoms and slowing disease progression.

Immune System Regulation

In multiple sclerosis, the immune system erroneously attacks myelin, causing progressive damage. Stem cells can modulate the immune system, reducing its overactive response and preventing further damage to the nervous system. This immune-modulating effect is critical in treating autoimmune conditions like MS. 

Stem cells can reset the immune system by influencing T cells and B cells, which play a key role in attacking myelin. Ongoing research is investigating how stem cells can rebalance this immune response, potentially leading to long-term disease stabilization and fewer relapses. This immune modulation is a key mechanism of stem cell therapy for MS, addressing the disease’s root cause rather than merely managing its symptoms.

Reducing Inflammation and Enhancing Nerve Function

Chronic inflammation is another key feature of multiple sclerosis, contributing to the ongoing destruction of nerve cells and myelin. Stem cells can help combat this inflammation by producing anti-inflammatory cytokines, which are molecules that regulate the immune response. By reducing inflammation, stem cells help prevent further damage to the nervous system and support the body’s healing process.

Additionally, stem cells play a vital role in encouraging the repair of nerve cells and improving communication between the brain and the body. The regeneration of myelin and the reduction of inflammation work together to enhance nerve function, which can lead to improvements in mobility, coordination, cognitive function, and overall quality of life for MS patients.

Stem cell treatments for MS offer a multifaceted approach that addresses the damage caused by the disease, from repairing the myelin sheath to modulating the immune system and reducing inflammation. These scientific mechanisms provide a strong foundation for why stem cell therapy is considered a potential game-changer for those living with multiple sclerosis.

Types of Stem Cell Therapies for MS: Which One is Right for You?

Stem cell therapy is rapidly emerging as a viable option for individuals living with multiple sclerosis (MS). However, there are different types of stem cell therapies, each with unique processes and potential benefits. Understanding the different options available can help you make an informed decision about the treatment that’s best for you.

Autologous Stem Cell Therapy 

Autologous stem cell therapy uses the patient’s own stem cells, offering a highly personalized treatment for multiple sclerosis (MS). The process begins with collecting stem cells from the patient’s bone marrow or blood. These cells are then purified in a laboratory and reintroduced into the body to help regenerate damaged tissues, repair myelin, and modulate the immune system.

A significant benefit of autologous stem cell therapy is the elimination of immune rejection, as the cells are derived from the patient’s own body. This reduces complications associated with foreign tissue. However, challenges include the time-consuming, expensive nature of the process and limited stem cell availability in some patients, especially older individuals. Despite these hurdles, it remains a popular and effective MS treatment.

Allogeneic Stem Cell Therapy 

Allogeneic stem cell therapy uses stem cells from a healthy donor rather than the patient’s own  cells. These donor cells are harvested, processed in a lab, and transplanted into the patient. This approach is helpful when a patient’s stem cells are not viable or when a quicker stem cell replenishment is needed.

One key benefit is the immediate availability of high-quality donor cells that can regenerate tissue, repair myelin, and modulate the immune response in MS patients.

Mesenchymal Stem Cells (MSCs)

Mesenchymal stem cells (MSCs), typically sourced from umbilical cord tissue (UCT), adipose tissue, or bone marrow, hold significant promise for treating multiple sclerosis (MS). These cells are known for reducing inflammation, promoting tissue repair, and aiding in the regeneration of damaged myelin. MSCs also modulate the immune system, addressing the autoimmune response driving MS progression.

MSC therapy has garnered attention for its potential to repair MS-related damage while addressing immune dysfunction. These cells release anti-inflammatory cytokines, alleviating chronic inflammation. Additionally, MSCs may aid in nerve tissue repair, improving mobility and cognitive function. While research is ongoing, early findings suggest MSC therapy could reduce relapses, manage symptoms, and even slow disease progression, enhancing the quality of life for MS patients.

At Stemedix, we offer a range of stem cell treatment options tailored to your individual needs. Our team of experts can help you determine the most suitable approach for managing your MS. We’re committed to providing advanced treatments that allow you to live a better life with MS, and our personalized care guarantees that you receive the best possible outcomes.

What Does the Stem Cell Treatment Process Involve for MS?

Stem cell therapy is an evolving treatment option for multiple sclerosis (MS), offering hope for patients seeking ways to manage their symptoms and slow disease progression. Understanding the stem cell treatment process is essential for anyone considering this approach. Here’s a detailed look at what you can expect throughout the process, from your initial consultation to the post-treatment phase.

Initial Consultation and Patient Evaluation

The initial step in the stem cell treatment process for MS is the consultation with a healthcare provider. During this meeting, the provider will review your medical history, conduct a thorough examination, and evaluate any early warning signs of multiple sclerosis, such as unexplained fatigue, numbness, or vision problems. 

Diagnostic tests, including MRI scans and blood tests, may be recommended to evaluate the extent of myelin damage and inflammation. Based on these results, the provider will discuss different stem cell therapy options. This guarantees a personalized treatment plan that aligns with your medical history and the progression of MS, guiding you toward the most suitable approach.

Stem Cell Collection and Processing

Once the type of stem cell therapy is determined, the next step is stem cell collection. For autologous therapy (using your own cells), stem cells are typically harvested from your bone marrow or adipose (fat tissue). In the case of allogeneic therapy (using donor cells), stem cells are sourced from a carefully screened donor to make sure compatibility.

After collection, the stem cells are processed in a laboratory where they are isolated, purified, and prepared for reintroduction into the body. This step is essential to make sure that the cells are viable and effective. For mesenchymal stem cells (MSCs), special techniques are employed to enhance their ability to repair tissue, reduce inflammation, and regenerate damaged myelin.

Injection and Treatment Procedures

Once the stem cells are prepared, they are reintroduced into your body. Depending on the therapy type, this may be done through an intravenous infusion or direct injections into affected areas, such as the spinal cord or regions with significant nerve damage. This approach targets areas that need repair. 

The treatment duration varies based on the selected therapy and individual patient needs. Some treatments may take a few hours, while others require multiple sessions over weeks or months. Throughout the process, your healthcare provider will closely monitor progress, including improvements in mobility, muscle strength, and cognitive function, and adjust the treatment plan as needed to achieve the best possible outcome.

Tracking Progress and Long-Term Care

After the treatment, regular follow-up appointments are vital for tracking your progress. Your healthcare provider will continue to monitor your response to stem cell therapy, which may include conducting tests to evaluate changes in symptoms and overall function. This allows for adjustments to the treatment plan as necessary to guarantee continued progress in managing MS.

At Stemedix, we understand that each patient’s journey with multiple sclerosis is unique. Our experienced team is committed to providing personalized care throughout every stage of the stem cell therapy process. We work closely with you to get the best possible outcome and offer ongoing support as you traverse the challenges of living with MS.

Stem cell therapy offers a promising path forward for many people with multiple sclerosis. By partnering with healthcare providers who specialize in these advanced treatments, you can explore the potential benefits and make informed decisions about your health and well-being.

Why Choose Stemedix for Stem Cell Therapy for MS?

When considering stem cell treatments for multiple sclerosis (MS), selecting the right provider is very important to ensuring the best possible outcomes. At Stemedix, we specialize in offering advanced regenerative treatments that are personalized to each patient’s specific needs. Our commitment to delivering exceptional care and effective stem cell therapies for MS is backed by years of expertise in treating neurodegenerative diseases, including multiple sclerosis.

Expertise in Stem Cell Treatments

At Stemedix, we have a proven track record of success in treating multiple sclerosis and other neurodegenerative conditions with stem cell therapy for MS. Our team brings extensive experience and knowledge to each treatment plan, ensuring that you receive the most effective care for your unique situation.

What sets us apart is our ability to combine scientific advancements with personalized care. We understand that MS affects each individual differently, which is why we tailor our treatment plans to address your specific symptoms, disease progression, and overall health. Our specialists are well-versed in the latest stem cell therapies, including autologous and allogeneic stem cell options. They will work closely with you to choose the most appropriate therapy for your needs.

Supportive Care Throughout the Treatment Process

Going through the complexities of MS and stem cell therapy can be overwhelming, but with Stemedix, you’ll never feel alone. From the moment you reach out for a consultation, our team of care coordinators will be there to support you every step of the way. Whether you need assistance with scheduling, understanding the treatment process, or managing the emotional aspects of your journey, we are here to make sure that you feel informed, comfortable, and confident throughout your experience.

We offer continuous support before, during, and after your stem cell treatment. This is especially important for MS patients, who may need additional assistance to track progress and manage any challenges during recovery. Our care coordinators are dedicated to guiding you through the process, offering consistent follow-up, and making sure that you feel empowered in your healthcare decisions.

Stemedix: A New Hope for Patients with MS

Stem cell therapy has emerged as a promising treatment option for multiple sclerosis (MS), offering hope to those living with this challenging condition. As we’ve discussed, stem cells have the potential to repair the damage caused by MS, particularly by regenerating myelin, reducing inflammation, and modulating the immune system. Unlike traditional treatments, stem cell therapy addresses the underlying causes of MS, which can lead to more effective management of symptoms. By stimulating the body’s natural regenerative processes, stem cells may help improve nerve function and slow the disease’s progression. If you’ve noticed early warning signs of multiple sclerosis, such as unexplained fatigue, numbness, or vision problems, stem cell therapy could offer a potential solution.

For MS patients, stem cell therapy can offer significant benefits, including better mobility, improved cognitive function, and enhanced overall quality of life. Though research continues to evolve, the results so far suggest that stem cell therapy could be a valuable tool for managing MS symptoms more effectively. If you’re living with MS and want to explore new treatment options, stem cell therapy could be the solution you’ve been searching for. At Stemedix, based in Saint Petersburg, FL, we offer personalized care and advanced stem cell treatments designed to help you manage your MS symptoms and improve your quality of life. Our team is here to support you from the initial consultation to post-treatment care. 

Contact Stemedix today at (727) 456-8968 or email us at yourjourney@stemedix.com  to schedule your consultation. Let us help you discover how stem cell therapy can make a difference in your journey with MS.

Alcoholic Liver Disease (ALD): An Overview and Emerging Treatments

Alcoholic Liver Disease (ALD): An Overview and Emerging Treatments

Alcoholic liver disease (ALD) is a serious global health problem that arises from chronic or binge alcohol consumption. As a chronic liver disease, ALD occurs due to alcohol’s harmful effects on the liver, which is the first organ to metabolize alcohol. This process leads to the production of harmful byproducts that damage liver cells and cause oxidative stress. Over time, this damage triggers inflammation and fibrosis (scarring of the liver), eventually progressing to conditions such as steatosis (fatty liver), steatohepatitis (inflammation and fat accumulation), cirrhosis, and even hepatocellular carcinoma (HCC), a type of liver cancer.

Despite the growing need for effective treatment options, there are currently no FDA-approved therapies specifically for ALD. The only definitive treatments available are alcohol abstinence and liver transplantation, but these options are not always accessible or feasible for all patients. Given the limitations of current treatment options, there is a pressing need for new therapeutic strategies to combat ALD.

Challenges in Current Treatment Approaches

To date, the treatments for ALD primarily focus on managing the symptoms and delaying disease progression until a liver transplant is possible. These supportive therapies aim to reduce oxidative stress, regenerate liver cells, and control inflammation. However, they are not effective for many patients.

Various drugs have been investigated to target the underlying causes of ALD, such as oxidative stress and inflammation. Despite showing promise in preclinical studies, many of these therapies have failed to demonstrate significant benefits in clinical trials. The complexity of ALD and the fact that it often develops alongside other health issues, such as poor nutrition or hepatitis, make it difficult to find a one-size-fits-all solution.

Stem Cell Therapy: A Promising Option

In recent years, stem cell therapy has emerged as a potential treatment for ALD. Among the different types of stem cells, mesenchymal stem cells (MSCs) have shown the most promise due to their ability to regenerate damaged tissue and modulate immune responses. MSCs can be sourced from various tissues such as bone marrow, adipose tissue, and umbilical cord blood. Importantly, the use of MSCs is free from the ethical concerns associated with embryonic stem cells, making them a more attractive option for therapeutic research.

MSCs have been widely studied in the context of liver diseases, including ALD, and have shown positive results in preclinical and clinical trials. These stem cells work by reducing inflammation, promoting liver cell regeneration, and improving overall liver function. Moreover, MSCs secrete factors that contribute to their therapeutic effects. These factors, known as the secretome, contain cytokines, growth factors, and extracellular vesicles (EVs), which can mimic the healing properties of MSCs themselves.

Potential for Cell-Free Therapies

Given the challenges with direct stem cell transplantation, researchers are exploring cell-free approaches, which use the secretome and EVs derived from MSCs. These cell-free therapies could offer many of the same benefits as stem cell therapy without the risks associated with cell transplantation. For instance, the secretome contains anti-inflammatory molecules and other agents that can help regenerate damaged liver tissue, while EVs carry proteins and genetic material that help reduce liver damage.

Several preclinical studies have shown that MSC-derived secretomes and EVs can alleviate the symptoms of liver diseases similar to ALD by reducing oxidative stress and inflammation. However, more research is needed to determine the optimal methods for isolating and administering these factors in a clinical setting. One of the key obstacles is the difficulty in distinguishing between EVs and other natural components in the body, making it challenging to ensure that the right therapeutic agents are delivered to patients.

Current Research and Future Directions

Although MSC-based therapies are still in the early stages of development for ALD, the research to date has been encouraging. Studies in animal models have demonstrated that MSCs and their secreted factors can reduce inflammation, prevent fibrosis, and promote liver regeneration. For example, transplantation of MSCs has been shown to improve liver function in mice with alcohol-induced liver damage, while MSC-derived EVs have been found to enhance liver regeneration by promoting the growth of new liver cells.

Stem Cell Therapy: A Promising Future for Alcoholic Liver Disease

Alcoholic liver disease is a major global health issue, with alcohol consumption contributing to a range of liver disorders that can lead to severe and life-threatening conditions. While current treatment options are limited, advances in stem cell therapy, particularly the use of mesenchymal stem cells, offer new hope for treating ALD. MSCs and their secreted factors have shown potential to reduce liver damage, promote regeneration, and modulate the immune system, making them a promising therapeutic option for ALD.

However, despite the progress in preclinical studies, Han et al. highlight many challenges to overcome before these therapies can be widely adopted in clinical practice. Further research is needed to better understand how MSCs and their secretome work, and to develop safer, more effective treatments for ALD. In the meantime, addressing the root causes of ALD, such as excessive alcohol consumption, remains crucial to reducing the burden of this disease worldwide. With continued research and innovation, MSC-based therapies may one day offer a viable solution for patients suffering from this debilitating condition.

Source: Han J, Lee C, Hur J, Jung Y. Current Therapeutic Options and Potential of Mesenchymal Stem Cell Therapy for Alcoholic Liver Disease. Cells. 2023; 12(1):22. https://doi.org/10.3390/cells12010022

Adipose-Derived Stem Cells: A Promising New Approach for Treating Secondary-Progressive Multiple Sclerosis

Adipose-Derived Stem Cells: A Promising New Approach for Treating Secondary-Progressive Multiple Sclerosis

Multiple sclerosis (MS) is a chronic disease that affects the central nervous system, leading to a range of physical and cognitive impairments. There are different types of MS, with the most common being relapsing-remitting MS (RRMS) and secondary progressive MS (SPMS). RRMS is primarily an inflammatory condition, while SPMS involves a progressive decline due to neurodegeneration. 

While significant advancements have been made in treating RRMS with new medications that target inflammation, treatment options for SPMS remain limited. 

In this study, Fernández et al. aimed to evaluate the safety and feasibility of using adipose-derived mesenchymal stem cells (AdMSCs) in patients with SPMS.

Investigating Stem Cell Therapy for SPMS

Currently, the only approved treatments for SPMS with disease activity are interferon β and mitoxantrone, but their effectiveness is either uncertain or associated with serious side effects. Ocrelizumab has recently been approved for treating PPMS, but effective treatments for SPMS are still lacking.

Recently, stem cells have shown promise in various medical applications, particularly in regenerating damaged tissues and modulating the immune system. Currently, stem cell treatments are approved for conditions like blood disorders and severe burns, but mesenchymal stem cells (MSCs) are still being investigated for other uses. 

Fernandez et al.’s study was conducted in two hospitals in Spain and involved a placebo-controlled, randomized trial. Patients were divided into three groups: one receiving a placebo, another receiving a lower dose of stem cells, and the third receiving a higher dose. To ensure unbiased results, the study was triple-blinded, meaning neither the patients, treating physicians, nor the statisticians analyzing the data knew which treatment each patient received.

The study also required participants to provide 30 grams of adipose tissue for stem cell preparation. Once enrolled, patients received their assigned treatment and were monitored for a year with follow-up visits at 30 days, six months, and twelve months after treatment.

Study Results and Safety Evaluation

A total of 34 patients were initially enrolled in the study. However, four patients were excluded before receiving the treatment due to abnormalities in their stem cell samples. The remaining 30 patients completed the study, with 29 undergoing at least one follow-up assessment. Unfortunately, two patients in the placebo group passed away during the trial—neither death was linked to the stem cell treatment.

Throughout the study, 70 adverse events were reported among 22 patients, with the most common being urinary infections, respiratory infections, and anemia. Four serious adverse events occurred, but only one (a urinary infection) was in a patient who received stem cells. 

Overall, the authors report that there were no major safety concerns related to the treatment. 

Evaluating the Effectiveness of Stem Cell Therapy

To determine whether stem cell therapy had any effect on disease progression, the authors also analyzed various clinical measures, including the Expanded Disability Status Scale (EDSS), MRI scans, and evoked potentials (tests measuring nerve function). 

At the end of the 12-month follow-up, no significant differences were found between the placebo and treatment groups in terms of disability progression. The EDSS scores remained relatively stable in all groups, and MRI scans showed no significant reduction in active lesions or brain volume loss compared to placebo.

Fernández et al. report some positive trends in nerve function tests, particularly in visual evoked potentials, which measure the brain’s response to visual stimuli. Some patients in the treatment groups showed improvements in the speed of their nerve signals, suggesting possible stabilization or mild improvement. However, these changes were not statistically significant when compared to the placebo group.

AdMSC Therapy in SPMS: Findings, Challenges, and Future Directions

This study provides valuable insights into the safety of using AdMSCs in SPMS patients. The treatment was well tolerated, with no major safety concerns.

While there were some encouraging trends in nerve function, Fernández et al. call for larger and longer-term studies to determine whether these changes translate into meaningful clinical benefits. Considering this, the authors call for future research focusing on optimizing stem cell delivery methods, exploring combination therapies, and identifying patient subgroups that may benefit the most from stem cell treatments. 


Source: Fernández O, Izquierdo G, Fernández V, Leyva L, Reyes V, Guerrero M, et al. (2018) Adipose-derived mesenchymal stem cells (AdMSC) for the treatment of secondary-progressive multiple sclerosis: A triple blinded, placebo controlled, randomized phase I/II safety and feasibility study. PLoS ONE 13(5): e0195891. https://doi.org/10.1371/journal.pone.0195891

Exploring Stem Cell Therapy for Progressive Multiple Sclerosis

Exploring Stem Cell Therapy for Progressive Multiple Sclerosis

Progressive multiple sclerosis (PMS) is a complex, disabling form of multiple sclerosis characterized by the progressive accumulation of central nervous system (CNS) damage. This damage arises from chronic inflammation, demyelination, axonal injury, neuronal degeneration, and gliosis, affecting both white and gray matter in the brain and spinal cord. Despite advancements in MS research, effective reparative therapies for reversing the functional impairments associated with PMS remain largely unavailable.

A promising new approach for PMS treatment is NurOwn, a therapy based on mesenchymal stem cell-derived neurotrophic factor (MSC-NTF) cells. NurOwn utilizes a proprietary method to isolate and culture autologous (self-derived) mesenchymal stem cells (MSCs) from bone marrow. These MSCs are then differentiated to secrete high levels of neurotrophic factors (NTFs), which are believed to have both neuroprotective and immunomodulatory properties. Preclinical studies and early clinical trials have suggested that MSC-NTF therapy could help reduce CNS inflammation and promote neuronal repair mechanisms in PMS patients.

Cohen et al.’s open-label phase II study was conducted to evaluate safety/efficacy of three intrathecal cell treatments

Safety and Tolerability of MSC-NTF Therapy

In this Phase II clinical trial (BCT-101), the safety of MSC-NTF therapy was evaluated in 20 participants with PMS, of whom 18 received treatment. While most participants tolerated the therapy well, two discontinued due to adverse events related to the procedure, including mild symptoms such as coldness, muscle weakness, and fever, as well as one case of arachnoiditis -a rare inflammation of the arachnoid membrane surrounding the spinal cord. 

For both affected individuals, MRI scans revealed characteristic lumbar nerve root clumping. Treatment with epidural cortisone and analgesics provided symptom relief, with one participant’s symptoms resolving fully. Importantly, there were no recorded deaths or adverse events associated with MS relapses, and no clinically significant alterations were observed in blood, urinalysis, or vital sign parameters after dosing. 

According to the authors, these results highlight the potential tolerability of MSC-NTF therapy, though further studies are required to assess long-term safety.

Potential of MSC-NTF Therapy for PMS

NurOwn’s MSC-NTF cells have been tested in animal models relevant to PMS, including studies on autoimmune encephalomyelitis and optic nerve damage, which have shown the therapy’s potential to reduce inflammation and support neuroprotective mechanisms. 

Current studies suggest that intrathecal (spinal) administration may offer unique benefits over intravenous administration by directly addressing meningeal inflammation and delivering neurotrophic factors close to the site of CNS damage. The capability of MSC-NTF cells to modulate inflammation and potentially promote endogenous repair makes it a promising therapeutic modality in PMS.

Functional and Biomarker Outcomes

Cohen et al.’s phase II study used several functional outcomes to assess MSC-NTF efficacy in PMS, including the timed 25-foot walk test (T25FW), nine-hole peg test (9-HPT), low-contrast letter acuity (LCLA), and symbol digit modalities test (SDMT). 

Results indicated positive trends in these measures, suggesting that MSC-NTF therapy could improve mobility, hand function, and cognitive speed in PMS patients. Additionally, patient-reported outcomes, such as the MS Walking Scale-12 (MSWS-12), demonstrated improvements in walking function.

Biomarker analysis revealed reductions in cerebrospinal fluid (CSF) inflammatory markers, including MCP-1, sCD27, SDF-1, and osteopontin, indicating a decrease in CNS inflammation. Neuroprotective biomarkers, such as VEGF-A, HGF, NCAM1, and LIF, also showed consistent increases, suggesting that MSC-NTF cells might help support neuronal health and function in PMS. However, changes in neurodegenerative biomarkers, such as neurofilament light chain (NfL), were inconsistent, indicating the need for additional research to understand MSC-NTF’s impact on neuronal damage markers.

Insights and Future Directions Of MSC-NTF Therapy for PMS

This open-label, single-arm Phase II study demonstrated that MSC-NTF cells could be safely administered in participants with stable, non-relapsing PMS. Although two participants experienced arachnoiditis following intrathecal treatment, the majority tolerated the therapy well. Functional outcomes showed encouraging trends, suggesting possible benefits of MSC-NTF therapy in improving physical and cognitive function in PMS patients.

The study also highlighted several limitations, including the lack of a placebo-controlled group, which may introduce bias in interpreting efficacy results, and limitations in biomarker analysis due to sample timing. Additionally, inconsistent changes in neurodegenerative biomarkers and the small sample size warrant further investigation.

In summary, this Phase II trial provides preliminary evidence supporting the safety and potential therapeutic benefits of MSC-NTF cell therapy in PMS. While these initial findings are promising, larger placebo-controlled studies are needed to confirm efficacy and further elucidate the role of MSC-NTF cells in modulating CNS inflammation and promoting neuroprotection in PMS.

Source: Cohen JA, Lublin FD, Lock C, et al. Evaluation of neurotrophic factor secreting mesenchymal stem cells in progressive multiple sclerosis. Multiple Sclerosis Journal. 2023;29(1):92-106. doi:10.1177/13524585221122156

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our team.

You have Successfully Subscribed!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!