Mesenchymal Stem Cell Therapy: A New Therapeutic Approach for Ankylosing Spondylitis

Mesenchymal Stem Cell Therapy: A New Therapeutic Approach for Ankylosing Spondylitis

Ankylosing spondylitis (AS) is a progressive, inflammatory rheumatoid disease that, over time, can result in chronic spinal arthritis and can cause the vertebrae to fuse together. Affecting an estimated 300,000 people in the U.S., AS causes the spine to become less flexible and can result in a hunched posture.

There is no current treatment for AS and current drug therapy options are focused on reducing inflammation, stiffness, and back pain. While current treatments assist in reducing inflammation, many patients with AS continue to experience unresponsive or painful side effects from these drugs.

In the search for a cure for AS, stem cells – and specifically, mesenchymal stem cells (MSCs) have emerged as a potentially promising treatment option. Specifically, researchers believe the immunomodulatory and regenerative properties demonstrated by MSCs could reduce inflammatory responses and help tissue repair through cell-to-cell contact and secretion of soluble factors.

In this review, Abdolmohammadi et al. describe immunopathogenesis and current treatment restrictions of AS and discuss the recent findings of clinical trials involving MSC therapy in AS.

The safety and therapeutic potency of MSC therapy have been shown in many types of research.  While there are currently a number of in-process clinical trials exploring MSC transplantation in related disorders, the transplantation of MSCs is a therapeutic option for AS patients who cannot tolerate the anti-inflammatory drugs. 

Previous studies have demonstrated MSC infusion in AS patients to be a safe and beneficial choice with no severe side effects and is effective in decreasing related clinical symptoms and severity of the disease. There are also a number of clinical trials for curing AS patients currently in progress. These trials include phase 1 exploring the application of human umbilical cord-derived MSCs (hUC-MSCs) and IV infusion of MSCs plus NSAIDs in AS patients, phase 2 of a clinical trial evaluating human bone marrow-derived MSCs application in AS patients, and clinical trial phase I/II for the safety of MSC transplantation in patients with AS.

Although there have been notable achievements in the treatment of AS using NSAIDs, glucocorticoids, and other drugs, a therapeutic option without side effects has yet to be discovered. MSCs offer a favorable treatment option for the treatment of immune-mediated disorders, including AS.  

While findings of previous studies demonstrate that MSC injection might be beneficial in alleviating AS signs and symptoms, the authors point out that further study is required to determine several important features of MSC therapy, including cell origin, dosage, administration route, and the most ideal stage of disease for intervention, before it can be accepted as a clinical option for treating AS.

Source: “Ankylosing spondylitis and mesenchymal stromal/stem cell therapy.” https://www.sciencedirect.com/science/article/pii/S0753332218356762.

Mesenchymal Stem Cells and Hyaluronic Acid for Articular Cartilage Defects

Mesenchymal Stem Cells and Hyaluronic Acid for Articular Cartilage Defects

Articular cartilage primarily consists of chondrocytes and extracellular matrix and has an essential role in the process of joint movement, including lubrication, shock absorption, and conduction.  However, over time, damage to the articular cartilage caused by acute or repetitive trauma or disease of the joints – including osteoarthritis – often results in pain, lack of mobility, and reduced quality of life for an estimated 500 million people worldwide.

Current treatments to address articular cartilage defects include physiotherapy, medication, intra-articular injection, and intra-articular irrigation; none of these treatments are able to regenerate the new cartilage needed to correct the issue.

In recent years, mesenchymal stem cells (MSCs) have been found to be potential solutions for a number of diseases, including OA, specifically because of their ability to differentiate and produce a variety of cells. MSCs have also been found to be safe for use in humans and have demonstrated the ability to improve clinical symptoms such as pain, disability, and physical function.  

Additionally, hyaluronic acid (HA) has demonstrated itself to be an important component of the synovial fluid by protecting joint cartilage by providing lubrication and acting as a shock absorber. However, in the presence of OA, HA concentration decreases and results in increased aggravation and joint damage to cartilage. Like MSCs, clinical studies have also demonstrated HA’s ability to relieve pain in patients with OA. 

In this study, Li et al, investigate the therapeutic effects of bone marrow mesenchymal stem cells (BMSCs) combined with HA on articular cartilage repairs.

Specifically, 24 healthy canines were operated on to induce cartilage defect model before being randomly divided into 3 groups; each of these groups received a different treatment: bone marrow mesenchymal stem cells (MBSCs) plus HA, HA alone, or saline. After 28 weeks, Li et al. found that the canines treated with BMSCs plus HA (BMSC-HA) showed significant improvement in cartilage defects compared to those receiving just HA or just saline.  

The authors also found that while BMSCs-HA demonstrated the most significant improvement in cartilage defect, treatment with HA alone also demonstrated improvements when compared to those receiving saline alone.

Li et al. also identified a number of important limitations of this study, including the limited level of cells and proteins; the repair of cartilage defects in this study was a dynamic process that limited the study to the terminal point of repair; and that this was a preliminary and non-blinded study, which could have affected the evaluation of ICRS macroscopic and histological score. Considering this, the authors call for further blinded and basic experiments as a way to further improve understanding.

As a result of this study, Li et al. concluded that both BMSCs-HA and HA alone could significantly promote new cartilage formation, with BMSCs-HA demonstrating a better way to repair cartilage defects in a canine model. 


Source:  “Mesenchymal Stem Cells in Combination with Hyaluronic Acid for ….” 2 Jul. 2018, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6028658/.

Mesenchymal Stem Cells for Systemic Lupus Erythematosus

Mesenchymal Stem Cells for Systemic Lupus Erythematosus

Systemic Lupus Erythematosus (SLE) is an autoimmune disease that causes inflammation to affect many different body systems including the joints, skin, kidneys, blood cells, brain, heart, and lungs.

Affecting over 5 million people worldwide, and associated with a wide range of symptoms, SLE is difficult to diagnose. Currently, there is no treatment to prevent or cure lupus and current therapeutic treatment options are only designed to treat and minimize the symptoms of the disease.

Considering their strong protective and immunomodulatory abilities, mesenchymal stem cells (MSCs) have been recognized as a potential treatment for various autoimmune diseases and inflammatory disorders, including SLE.

In this research article, Zhou et al. conducted a meta-analysis with the goal of assessing if MSCs are able to become a new treatment for SLE with good efficacy and safety.  

Specifically, using predetermined criteria, the authors conducted a bibliographical search and statistical analysis to assess the efficacy and safety of MSCs for SLE. This search and analysis resulted in 10 studies comprising of 8 prospective or retrospective case series, including 231 SLE patients, and four randomized control trials (RCTs) with 47 patients with SLE in the case group and 37 patients with SLE in the control group, that fulfilled the inclusion criteria for this meta-analysis. 

The authors found that all of the studies included as part of the meta-analysis of RCT and self-controlled studies with the exception of one indicated that MSC treatment of SLE can achieve better efficacy. Specific results of the RCT meta-analysis supporting this conclusion included lower proteinuria, increased serum albumin, and increased serum C3 at 3 months, lower SLEDAI values at 3 months and 6 months, and a lower rate of adverse events in the MSC group when compared to the control group. 

Similar results were observed and reported from the meta-analysis of self-controlled studies. These results included MSC treatment significantly reducing proteinuria and the value of SLEDAI at 1 month, 2 months, 3 months, 4 months, 6 months, and 12 months. Further supporting evidence reported included improved values of SCR, BUN, C3, and C4.  


While the results of this meta-analysis were overwhelmingly supportive of MSCs as a potential treatment option for SLE, the authors also noticed several limitations associated with their findings. These limitations included the small sample sizes of the included studies and the inconsistency of the severity of the patient’s disease.

Although more studies with larger sample sizes should be conducted to confirm these findings, Zhou et at. concluded that MSCs might be a good treatment agent for SLE in the clinic. 


Source: “Immunomodulatory Effect of MSCs and MSCs-Derived Extracellular ….” 16 Sep. 2021, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8481702/.

Advancements in COPD Treatment Options

Advancements in COPD Treatment Options

Chronic obstructive pulmonary disease (COPD) is a condition that affects about 12.5 million people in the United States. COPD can become progressively worse over time and affect your breathing. 

Although lifestyle changes, oxygen therapy, and medications have traditionally served as the standard treatment choices, there is now another promising option for treating COPD, regenerative medicine, also known as stem cell therapy.

Understanding COPD: Symptoms and Causes

COPD is the umbrella term for several conditions that cause airflow blockages and other breathing-related issues. Chronic bronchitis and emphysema can both lead to COPD. Chronic bronchitis is the inflammation of your bronchial tubes’ lining, while emphysema destroys the air sacs at the ends of the smallest air passages.

Key Symptoms of COPD

Common symptoms of COPD are:

  • Chest tightness
  • Wheezing
  • Fatigue
  • Unintended weight loss
  • Shortness of breath
  • Chronic cough that produces clear, white, yellow, or green mucus
  • Swelling in feet and ankles

It’s common to experience exacerbations, which is when symptoms get significantly worse for days at a time. Many factors cause exacerbations, including exposure to air pollution, respiratory infections, and anything else that triggers inflammation. 

Causes and Risk Factors

Those most likely to develop COPD are women and people who:

  • Are over 65.
  • Have experienced air pollution.
  • Had many respiratory infections during childhood.

One of the most prevalent causes of COPD is smoking. Smoking irritates your airways, triggering inflammation that narrows those airways. Because smoke also damages the cilia, they’re not able to effectively get rid of mucus or particles from the airways. 

Another cause of COPD is alpha-1 antitrypsin (AAT) deficiency. This is an uncommon disorder that can cause emphysema. When you have AAT deficiency, you don’t have an enzyme that protects your lungs from inflammation. The deficiency makes it easier for your lungs to experience damage from irritating substances like dust and smoke. 

The Current Treatments and Their Limitations

Current COPD treatments include the use of bronchodilators and steroids — as well as oxygen therapy — to minimize the symptoms of the condition. 

Bronchodilators are medications that relax the muscles around the airways, helping you get better airflow. Some bronchodilators offer quick relief for acute episodes, while others are more appropriate for maintenance. 

Steroids work together with bronchodilators to reduce airway inflammation. The problem with steroids is that they have significant side effects when used as a long-term treatment. Some of these side effects include weight gain, an increased risk of developing infections, and even bone loss. 

Oxygen therapy is appropriate for people who have severe hypoxemia because it helps improve oxygen levels and relieve symptoms. Pulmonary rehabilitation programs are other options that combine exercise training with education to help patients understand the condition better. 

Surgery is the last recourse for people with severe COPD who don’t find any relief from medications or other options. For some people, a lung transplant is a viable choice. For others, the removal of damaged lung tissue can offer some relief from symptoms. 

Limitations of Traditional Treatments

Although doctors have been providing these options for a long time, they have limitations. For instance, they may offer relief from symptoms, but they typically don’t address the underlying cause of the problem. Even after treatment, the damage to your airway passages and lungs remains. 

The side effects of long-term use of these treatments can also be serious. Corticosteroids put a strain on your heart, cause muscle weakness, and can even impact wound healing, which can make them a challenging choice for long-term management of COPD. 

More invasive procedures, like surgery, have significant risks. Additionally, there are limits to who can receive surgery for COPD because of the use of anesthesia. 

Recent Advances in the Treatment of COPD

To help improve the quality of life of a patient with COPD, new treatment options are available. By working closely with your doctor, you can find the right choice for your unique needs.

Drug Therapy Innovations

The latest medications for those with COPD are new bronchodilators and anti-inflammatory medications that don’t cause the same side effects that may make you hesitate to try long-term drug treatments. The goal of these new medications is to offer longer-lasting support and reduce the flares you experience with COPD. 

Inhaler Technologies

Your inhaler is an important part of a COPD treatment program, and the latest technologies allow for better drug delivery while also ensuring that the inhaling techniques are correct. All of this makes it easier to stick to using your inhaler regularly. 

Stem Cell Therapy for COPD

A new potential treatment option for COPD is regenerative medicine, also known as stem cell therapy. This type of regenerative medicine uses stem cells to help your body heal itself so that it can regenerate damaged tissue for better lung function. 

Mesenchymal stem cells (MSCs) can be isolated from various sources, such as bone marrow, adipose tissue, or umbilical cord blood. These cells have the ability to differentiate into different cell types and possess immunomodulatory and regenerative properties.

MSCs have shown promise as a potential therapeutic approach for chronic obstructive pulmonary disease (COPD). While there is currently no cure for COPD, MSC-based therapies have the potential to modulate the immune response, reduce inflammation, and promote tissue repair in the lungs.

When administered into the lungs, MSCs can release anti-inflammatory molecules, promote tissue regeneration, and interact with the immune system to suppress excessive inflammation.

Getting Treatment for COPD

If you have COPD, ensuring that you have the right treatment plan on your side is vital for your long-term recovery. If you have COPD and it is progressively worsening, and there are limited treatment options available, you may want to explore stem cell therapy as a potential avenue for slowing disease progression or improving lung function.

Regenerative medicine aims to enhance what your body already does naturally, helping it heal so that you improve your quality of life. Speak to a regenerative specialist on the options you may have with this new alternative therapy option.

Regenerative Medicine Using Mesenchymal Stem Cells

Regenerative Medicine Using Mesenchymal Stem Cells

Biomedical applications of mesenchymal stem cells (MSCs) in the field of regenerative medicine continue to evolve. Coupled with the rapid development of molecular biology and transplantation techniques, MSC applications have become a central focus of research surrounding regenerative medicine. 

Since being discovered nearly 50 years ago, the understanding of various techniques for MSC extractions and the subsequent potential for differentiation has continued to advance.

This review, presented by Han et al., provides a brief overview of MSC extraction methods and their subsequent potential for differentiation and summarizes the future applications and challenges of various MSCs in the field of regenerative medicine.

It has now been well established that MSCs can be isolated from various tissues, including bone marrow, adipose, synovium, and human umbilical cord blood. The general process for MSC extraction involves the isolation of various tissues, digestion to obtain cells, culturing for three to five days, and continuous culturing of adherent cells to the desired passage. 

Interestingly, the authors point out that rabbits are the most frequently used animal models for experiments involving cartilage or bone tissue regeneration. Considering this, the authors call for the surface markers of rabbit tissue-derived MSC to receive increased focus and further verification. 

Han et al. also discuss the differentiation potentials of MSC types, highlighting that bone marrow-derived MSCs display superior capabilities for differentiation into osteogenesis and chondrogenesis under standard differentiation protocols. They also point out that umbilical cord blood-derived MSCs (UCB-MSCs) demonstrate biological advantages relative to other adult sources, including their capability for longer culture times, larger-scale expansion, and higher anti-inflammatory effects. Considering that differentiation conditions vary based on the type of MSC, the authors highlight that it is becoming increasingly necessary to choose the desired MSC type according to the specific purpose being sought.

MSC-based regenerative medicine has been widely studied and applied to many aspects of the field. This review summarizes several reports concerning the latest preclinical and clinical trials of various MSC types for tissue engineering, most notably the reconstruction of fragile tissue associated with the musculoskeletal system, nervous system, myocardium, liver, cornea, trachea, and skin.

In order to improve the therapeutic effectiveness of MSCs, while also reducing the potential identified risks, the authors suggest reducing excessive cytokines, further exploring the immunomodulatory effects of MSCs, and establishing strict preclinical biosafety testing rules. Additionally, longer and larger controlled clinical trials are required to further determine the safety of MSCs.

While there have been tremendous advances in the field of regenerative medicine, especially as they relate to MSCs, Han et al. share a number of challenges that have to be overcome before the clinical application of MSC therapy, with the primary challenge being the implementation of a standardized method of isolation and culturing for MSCs. 

The authors conclude this review by summarizing three distinct properties of MSCs that make them an optimal source of tissue regeneration:  their immunoregulatory capacity, paracrine or autocrine functions that generate growth factors, and their ability to differentiate into target cells.

Source: “Mesenchymal Stem Cells for Regenerative Medicine – PMC – NCBI.” 13 Aug. 2019, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6721852/.

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our team.

You have Successfully Subscribed!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!