Functions of Mesenchymal Stem Cells in Spinal Cord Injuries

Functions of Mesenchymal Stem Cells in Spinal Cord Injuries

Spinal cord injury is one of the most complicated and serious pathological impairments affecting the central nervous system. Since the human body is unable to regenerate and repair the spinal cord after injury, there is a high likelihood of suffering permanent damage and disability.

Often compounding the issue of SCI, secondary events occurring after the initial injury to the spinal cord significantly reduce cell migration and axonal regrowth and limit repair and regeneration. 

Recently, transplantation of mesenchymal stem cells (MSCs) has been shown to promote the repair of injured spinal cord tissues in animal models. However, as Qu and Zhang highlight in this review, there remain many unanswered questions that are essential for improving the effects of this MSC therapy. As such, the authors focus this review on recent information about the behavior and function of MSCs in SCI, the function of biomaterials to direct the behavior of MSCs, and the attempt to emphasize combinational strategies such as tissue engineering for functional improvements of SCI.

There are studies showing that the migratory and homing capacities of MSCs are closely related to their engraftment and regeneration ability. Considering this, the authors highlight the importance of having MSCs migrate and integrate into host spinal cord tissue. Since MSC homing toward injured tissue is not an efficient process, and to ensure a more effective stem cell therapy outcome, it is important that these transplanted cells be introduced in a way that increases the migratory potential of healthy MSCs to the site of injured tissue.

Additionally, while transplanted cells have been identified adjacent to neurons after SCI, the surviving number of grafted and differentiated neurons was too small to be considered to contribute to functional recovery after SCI.  However, data suggests that the ability of MSCs to secrete soluble factors or vesicles rather than engrafting and transdifferentiating might serve an important role in SCI repair.

The authors also point to studies that indicate MSC implantation could promote a therapeutic effect and functional recovery in experimental SCI animal models. The authors believe that this is a result of MSCs ability to differentiate into specialized neuronal and glial cell lineages after transplantation. While MSC transplantation has not yet been proven to be an effective and reliable therapy for SCI, additional studies need to be done before the therapy is utilized in clinical applications. 

MSCs respond to the local environment in multiple ways and represent the most promising exosomes for neuropathic applications. Qu and Zhang conclude this review by calling for more intensive studies examining the potential benefits of combining MSCs with nerve tissue-engineered scaffolds to direct cell behaviors after SCI, including growth, migration, and differentiation.  

Source: “Roles of Mesenchymal Stem Cells in Spinal Cord Injury – Hindawi.” https://www.hindawi.com/journals/sci/2017/5251313/

Exploring the Potential of Stem Cell Therapy in Addressing the Challenges of Pancreatitis

Exploring the Potential of Stem Cell Therapy in Addressing the Challenges of Pancreatitis

Acute and chronic pancreatitis are associated with local and systemic inflammation that is linked to a host of serious health issues. A result of the digestive juices and enzymes attacking the pancreas, pancreatitis currently has no definite treatment. 

Currently, it is estimated that over 6 million people worldwide are afflicted by acute or chronic pancreatitis with the number of diagnoses appearing to be steadily increasing.

The rising interest in stem cell therapy being used to potentially treat a wide variety of other diseases has led to interest in exploring it as a way to aid in the treatment of both acute and chronic pancreatitis. 

As part of this review, Chela et al. examine numerous studies using commonly used stem cells to explore their promise in the treatment of pancreatitis.

A number of studies are utilizing stem cells to repair and replace tissue damaged as a result of numerous gastrointestinal diseases, including acute and chronic pancreatitis. In the case of using stem cells, and specifically mesenchymal stem cells (MSCs), to treat pancreatitis, researchers are interested in the ability of these stem cells to regenerate damaged cells and to influence the immunological and inflammatory response resulting from this condition.  

A significant issue that has stymied progress in the ability of the pancreas to self-repair and regenerate when affected by pancreatitis is the perceived lack of stem cells found specifically in the tissue of the pancreas. While there has been conflicting research into whether or not stem cells exist in pancreatic tissue, the research reviewed by the authors indicates that there appears to be a tiny amount of stem cells located within pancreatic tissue.

Considering this and considering that additional research indicates that other stem cells found in the pancreas appear to originate from bone marrow (BM), the authors believe the ability of MSCs’ ability to differentiate will support the healing of the pancreas; these include stem cell sources from BM, adipose tissue, umbilical cord, and induced pluripotent stem cells (iPSCs).

Source: “Stem cell therapy: a potential for the perils of pancreatitis – PMC – NCBI.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7433995/.

Exploring Cell Therapy for Neuropathic Pain

Exploring Cell Therapy for Neuropathic Pain

Neuropathic pain (NP) occurs when the nerves located either inside or outside of the brain and spinal cord are damaged by a lesion or a condition. To date, pharmacological and surgical treatments to address NP have focused on providing symptomatic relief without treating the underlying cause of the condition. These treatment approaches have not been overwhelmingly successful with over 50% of NP patients attaining adequate pain relief.

Recently, an increasing amount of pre-clinical and clinical research has demonstrated cell transplantation-based therapy for NP to be a promising treatment alternative.  

In this review, Yin et al. summarize the use of cell grafts for the treatment of NP, synthesize the latest advances and adverse effects, and discuss possible mechanisms to further the development of cell transplant-based therapies for NP. 

Neural stem cells (NSCs) demonstrate the ability to divide, self-renew, and differentiate into neurons, astrocytes, and oligodendrocytes; they are also present in a wide array of tissues throughout the body. Considering they are capable of differentiating into neurons and glial, NSCs are considered an ideal candidate cell for replacing damaged nerve cells and delivering trophic factors to the site of lesions contributing to NP. Additional studies have demonstrated NSCs ability to regenerate nerves, offer neuroprotective effects, and secrete a number of factors that enhance the survival of motor and sensory neurons. NSCs transplantation coils also ease NP caused by peripheral nerve injury, a potential benefit that has been observed in animal models.

Olfactory ensheathing cells (OECs) are glial cells that surround and enclose the olfactory nerve bundle and possess the unique ability to transgress the peripheral nervous system (PNS) and central nervous system (CNS). Considering OECs have been shown to have neuro-regenerative functions, they are also considered to be a good choice for treating nerve injury and NP. Studies using animal models have confirmed that OECs transplantation could promote motor recovery and mitigate pain. Although OECs have good prospects of being used for treating NP, the authors call for additional research with longer observation time to verify their long-term effects and safety.

Mesenchymal stem cells (MSCs) can be obtained from a wide variety of sources and can be induced to differentiate into endoderm, mesoderm, and ectoderm cell lines. MSCs are often used for the treatment of diseases involving neuroinflammatory components and have been shown in animal studies to potentially alleviate NP symptoms. 

Other cell therapies currently being evaluated for use as a treatment for NP include bone marrow mononuclear cells, GABAergic cells, and genetically modified cells. 

The authors conclude that, despite the small number of clinical studies and the lack of systematic evidence, cell therapy as a treatment alternative for NP should be further explored. Specifically, further research should examine the optimal transplantation route, transplantation timing, number of transplanted cells, and transplantation survival rate.


Source:  “Cell therapy for neuropathic pain – Frontiers.” 27 Feb. 2023, https://www.frontiersin.org/articles/10.3389/fnmol.2023.1119223.

A Systematic Review of Mesenchymal Stem Cell Therapy in Traumatic Spinal Cord Injury

A Systematic Review of Mesenchymal Stem Cell Therapy in Traumatic Spinal Cord Injury

Spinal cord injury (SCI) is a devastating pathological condition affecting motor, sensory, and autonomic function. Additionally, recovery from a traumatic SCI (TSCI) is challenging due to the central nervous system’s limited capacity to regenerate cells, myelin, and neurological connections. 

While traditional therapeutic treatments have proven ineffective in assisting in recovery, mesenchymal stem cells (MSCs) hold significant promise for the treatment of TSCIs.  

As part of this systematic review, Montoto-Meijide et al. analyze the efficacy, safety, and therapeutic potential of MSC-based cell therapies in TSCI.

Specifically, the authors identified 22 studies fitting the objectives of this review, which provided the information needed to analyze changes in AIS (ASIA Impairment Scale) grade; to study changes in ASIA sensory and motor score; to evaluate chances in neurophysiological and urodynamic parameters; to identify changes in neuroimaging tests; and to test for the existence of adverse effects of MSC therapy. 

Typically occurring as a result of trauma related to accidents or falls, TSCIs consist of two phases, a primary and a secondary phase. Considering the progression of SCI from the primary to secondary phase, the development of a therapeutic neuroprotective approach to prevent secondary injury continues to be a priority in both clinical and basic research. 

Considering this, MSCs are currently one of the most promising therapeutic options for TCI, primarily due to their capacity for neuronal differentiation and regeneration, as well as their anti-apoptotic, anti-inflammatory, and angiogenic properties.  

The 22 studies analyzed as part of this review included 463 patients. When analyzed in terms of the objectives listed above, Montoto-Meijide et al. reported that in controlled studies patients who received MSC therapy improved their AIS by at least one grade, with most studies also demonstrating improvement in sensory cores and motor scores.  

In terms of neuroimaging evidence, the authors reported decreased lesion cavity size and decreased lesion hyperintensity. In addition, one-third of trials reported mild or moderate adverse effects related to the route of administration, and no reported serious treatment-related adverse effects. 

The authors of this review reported that their results were consistent with the findings of other recent meta-analyses conducted by other researchers and were also consistent with studies that used a large number of patients but were not included in their review.

In addition, the authors also raise several interesting points that required further study, including determining the ideal stem cell type to use, identifying the most effective route and dose of administration, and finding out which degree and stage of development of the TSCL is most receptive to MSC therapy.

While MSC therapy continues to demonstrate promising potential results, Montoto-Meijide et al. also highlight future potential therapies currently in development. These therapies include gene therapies, nanomaterials, and neurostimulation combined with rehabilitation; all three of these potential treatments have shown promise when used in patients with SCI.

Limitations of this review include the relative newness of cell therapy in TSCI made it difficult to find relative studies and most of the studies used did not have a control group, were not randomized, showed low methodological quality, and lacked detail about the process and/or patient follow-up. Considering this, the authors emphasize the need for multi-center, randomized, and controlled trials with larger numbers of patients over a long period of time as a way to draw firm conclusions regarding this therapy.

Montoto-Meijide et al. conclude the positive changes in AIS grade and in ASIA sensory and motor scores, in addition to the short- and medium-term safety of this therapy, demonstrate the potential benefit of MSC therapy in TSCI patients. 

Source: Montoto-Meijide R, Meijide-Faílde R, Díaz-Prado SM, Montoto-Marqués A. Mesenchymal Stem Cell Therapy in Traumatic Spinal Cord Injury: A Systematic Review. International Journal of Molecular Sciences. 2023; 24(14):11719. https://doi.org/10.3390/ijms241411719

A Comprehensive Review of Mesenchymal Stem Cell Therapy in Amyotrophic Lateral Sclerosis (ALS) Patients

A Comprehensive Review of Mesenchymal Stem Cell Therapy in Amyotrophic Lateral Sclerosis (ALS) Patients

Amyotrophic lateral sclerosis (ALS) is a rare, deadly progressive neurological disease that affects the upper and lower motor neurons. Characterized by weakening and gradual atrophy of the voluntary muscles, ALS gradually affects the ability to eat, speak, move, and eventually breathe.

With an estimated survival rate of 2 to 5 years from disease onset, 90% of ALS patients develop sporadic ALS and there is no known cure. Although the cause of ALS remains unknown, there is scientific evidence that both genetics and environment are key contributors. This evidence includes over 30 different gene mutations and a number of environmental factors (exposure to toxins, heavy metals, pesticides, smoking, and diet) have been found to be associated with neurological destruction and ALS development. Additionally, ALS has been found to be approximately 2 times more likely to occur in men than women. 

In the search for a definitive cure for ALS, the use of mesenchymal stem cells (MSCs) for both treatment and management of the condition has been increasingly more common in preclinical and clinical studies. 

In this review, Najafi et al. discuss multiple aspects of ALS and focus on MSCs’ role in disease management as demonstrated in clinical trials. 

MSCs are multipotent cells with immunoregulatory, anti-inflammatory, and differentiation abilities that make them a strong candidate for use in therapeutic applications intending to expand the lifespan of ALS patients. 

To date, preclinical research investigating the cause and potential treatment of ALS primarily relies on data gathered from rat and mouse models. As part of these models, researchers have discovered that the transplantation of MSCs through multiple routes (including intrathecal, intravenous, intramuscular, and intracerebral) can be a safe and effective way to delay the decline of motor function and promote neurogenesis.  

These preclinical studies have also demonstrated that the administration of MSCs from specific tissues has shown significant advantages in delaying the degeneration of motor neurons, improving motor function, and extending lifespan.

Over 20 years of clinical research have found that direct injection of autologous expanded MSCs is safe and well tolerated and demonstrated a significant decrease in disease progression and increase in life expectancy in patients. 

The authors conclude that ALS is a fatal neurodegenerative disease with no definitive cure.  However, several preclinical and clinical studies have shown that MSC’s anti-inflammatory, immunoregulator, and differentiation properties, have demonstrated to be a good therapeutic approach for treating ALS.  

Source: Najafi S, Najafi P, Kaffash Farkhad N, et al. Mesenchymal stem cell therapy in amyotrophic lateral sclerosis (ALS) patients: A comprehensive review of disease information and future perspectives. Iran J Basic Med Sci. 2023;26(8):872-881. doi:10.22038/IJBMS.2023.66364.14572

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our team.

You have Successfully Subscribed!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!