Exploring the Potential of Stem Cell Therapy in Addressing the Challenges of Pancreatitis

Exploring the Potential of Stem Cell Therapy in Addressing the Challenges of Pancreatitis

Acute and chronic pancreatitis are associated with local and systemic inflammation that is linked to a host of serious health issues. A result of the digestive juices and enzymes attacking the pancreas, pancreatitis currently has no definite treatment. 

Currently, it is estimated that over 6 million people worldwide are afflicted by acute or chronic pancreatitis with the number of diagnoses appearing to be steadily increasing.

The rising interest in stem cell therapy being used to potentially treat a wide variety of other diseases has led to interest in exploring it as a way to aid in the treatment of both acute and chronic pancreatitis. 

As part of this review, Chela et al. examine numerous studies using commonly used stem cells to explore their promise in the treatment of pancreatitis.

A number of studies are utilizing stem cells to repair and replace tissue damaged as a result of numerous gastrointestinal diseases, including acute and chronic pancreatitis. In the case of using stem cells, and specifically mesenchymal stem cells (MSCs), to treat pancreatitis, researchers are interested in the ability of these stem cells to regenerate damaged cells and to influence the immunological and inflammatory response resulting from this condition.  

A significant issue that has stymied progress in the ability of the pancreas to self-repair and regenerate when affected by pancreatitis is the perceived lack of stem cells found specifically in the tissue of the pancreas. While there has been conflicting research into whether or not stem cells exist in pancreatic tissue, the research reviewed by the authors indicates that there appears to be a tiny amount of stem cells located within pancreatic tissue.

Considering this and considering that additional research indicates that other stem cells found in the pancreas appear to originate from bone marrow (BM), the authors believe the ability of MSCs’ ability to differentiate will support the healing of the pancreas; these include stem cell sources from BM, adipose tissue, umbilical cord, and induced pluripotent stem cells (iPSCs).

Source: “Stem cell therapy: a potential for the perils of pancreatitis – PMC – NCBI.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7433995/.

Using Mesenchymal Stem Cell Therapy for Traumatic Spinal Cord Injury

Using Mesenchymal Stem Cell Therapy for Traumatic Spinal Cord Injury

Spinal cord injury is a global term used to capture damage to the spinal cord resulting from trauma (typically in the form of car accidents, falls, or work-related injuries) or from disease or degenerative conditions.  

Worldwide, it is estimated that up to 500,000 people suffer some type of spinal cord injury (SCI), with most resulting from car accidents, falls, or violence. The World Health Organization reports that people suffering from SCI are between two and five times more likely to die prematurely as a result of this injury.  

To date, there have been limited advances in therapeutic treatment or correction related to SCI, with any therapeutic development focused on treatment of SCI-related symptoms as opposed to the condition itself.  

In this study, Muthu et al. analyze evidence of the efficacy and safety of mesenchymal stem cell (MSC) therapy in human subjects with traumatic SCI and identify the therapy’s potential for the future management of SCI.

To analyze this evidence, the authors identified and reviewed studies evaluating the efficacy and safety of stem cell therapy for SCI. Specifically, Muthu et al. screened 321 research articles before narrowing this study down to 66 full-text reviews and finally identifying 19 studies that fit the criteria for this review.

These 19 studies involving 670 subjects demonstrated that those in the identified intervention groups showed statistically significant improvement in key measurement criteria, including the American Spine Injury Association (ASIA) impairment scale grade improvement, ASIA sensorimotor score, activities of daily living score, residual urine volume, bladder function, light touch, and pinprick response.

The authors also found that while no significant difference was noted in motor score or activities of daily living scores, and that the intervention group has significant increase in complications, no serious or permanent adverse events were reported.

Considering these findings, Muthu et al.’s analysis establishes the efficacy and safety of MSC transplantation in the specific areas highlighted above (improvements in AIS grade, ASIA sensory score, and bladder function) without major adverse events. The authors also call for further research to better understand standardized dosing, time, route of administration, and source of MSCs used for transplantation. 

Source: Muthu S, Jeyaraman M, Gulati A, Arora A. Current evidence on mesenchymal stem cell therapy for traumatic spinal cord injury: systematic review and meta-analysis. Cytotherapy. 2021 Mar;23(3):186-197. doi: 10.1016/j.jcyt.2020.09.007. Epub 2020 Nov 9. PMID: 33183980.

Exploring Cell Therapy for Neuropathic Pain

Exploring Cell Therapy for Neuropathic Pain

Neuropathic pain (NP) occurs when the nerves located either inside or outside of the brain and spinal cord are damaged by a lesion or a condition. To date, pharmacological and surgical treatments to address NP have focused on providing symptomatic relief without treating the underlying cause of the condition. These treatment approaches have not been overwhelmingly successful with over 50% of NP patients attaining adequate pain relief.

Recently, an increasing amount of pre-clinical and clinical research has demonstrated cell transplantation-based therapy for NP to be a promising treatment alternative.  

In this review, Yin et al. summarize the use of cell grafts for the treatment of NP, synthesize the latest advances and adverse effects, and discuss possible mechanisms to further the development of cell transplant-based therapies for NP. 

Neural stem cells (NSCs) demonstrate the ability to divide, self-renew, and differentiate into neurons, astrocytes, and oligodendrocytes; they are also present in a wide array of tissues throughout the body. Considering they are capable of differentiating into neurons and glial, NSCs are considered an ideal candidate cell for replacing damaged nerve cells and delivering trophic factors to the site of lesions contributing to NP. Additional studies have demonstrated NSCs ability to regenerate nerves, offer neuroprotective effects, and secrete a number of factors that enhance the survival of motor and sensory neurons. NSCs transplantation coils also ease NP caused by peripheral nerve injury, a potential benefit that has been observed in animal models.

Olfactory ensheathing cells (OECs) are glial cells that surround and enclose the olfactory nerve bundle and possess the unique ability to transgress the peripheral nervous system (PNS) and central nervous system (CNS). Considering OECs have been shown to have neuro-regenerative functions, they are also considered to be a good choice for treating nerve injury and NP. Studies using animal models have confirmed that OECs transplantation could promote motor recovery and mitigate pain. Although OECs have good prospects of being used for treating NP, the authors call for additional research with longer observation time to verify their long-term effects and safety.

Mesenchymal stem cells (MSCs) can be obtained from a wide variety of sources and can be induced to differentiate into endoderm, mesoderm, and ectoderm cell lines. MSCs are often used for the treatment of diseases involving neuroinflammatory components and have been shown in animal studies to potentially alleviate NP symptoms. 

Other cell therapies currently being evaluated for use as a treatment for NP include bone marrow mononuclear cells, GABAergic cells, and genetically modified cells. 

The authors conclude that, despite the small number of clinical studies and the lack of systematic evidence, cell therapy as a treatment alternative for NP should be further explored. Specifically, further research should examine the optimal transplantation route, transplantation timing, number of transplanted cells, and transplantation survival rate.


Source:  “Cell therapy for neuropathic pain – Frontiers.” 27 Feb. 2023, https://www.frontiersin.org/articles/10.3389/fnmol.2023.1119223.

A Systematic Review of Mesenchymal Stem Cell Therapy in Multiple Sclerosis

A Systematic Review of Mesenchymal Stem Cell Therapy in Multiple Sclerosis

Multiple sclerosis (MS) is a progressive autoimmune disease that affects the brain, spinal cord, and central nervous system (CNS). Affecting an estimated 3 million people worldwide, MS is typically characterized by an autoimmune response that results in inflammation, demyelination, and degeneration of axons.

Most patients who are diagnosed with MS demonstrate a disease progression characterized by periods of relapse and remission that can last for an extended duration. 

There is no treatment that can yet address the various rates of MS progression.  Additionally, current therapeutic approaches are designed to address the shortening of the duration of recovery following an attack, mitigating the progression of the disease, and attenuating the symptoms associated with MS. 

Recently, mesenchymal stem cells (MSCs) have shown various ranges of effectiveness when used for treatment of autoimmune diseases in clinical trials. However, most of the trials utilizing MSCs for this purpose have been reported for a variety of reasons, including a low number of treated subjects, different doses used in the studies, the feasibility of autologous or allogeneic transplantation, and the unclear therapeutic window after the treatment effect.  

Considering this, the purpose of Islam et al.’s systematic review and meta-analysis (SRMA) was to provide a comprehensive assessment of the effectiveness and safety of MSC therapy in individuals diagnosed with MS. To achieve this, the authors identified studies that reported on the efficacy and safety of MSC therapy in human patients with MS based on the changes in the Expanded Disability Status Scale (EDSS) score from baseline to follow-up period.  This screening process resulted in a total of 30 studies being incorporated into the systematic review and 22 studies being included in the subsequent meta-analysis.  

Islam et al. reported that, following MSC therapy, it was observed that 40.4% of the patients with MS experienced improvement; 32.8% of patients remained stable while 18.1% experienced a worsening of their condition.  In terms of the safety of MSC therapy, the authors reported that while no major complications were observed, headaches (57.6%), fever (53.1%), urinary tract infections (23.9%), and respiratory tract infections (7.9%) were the most commonly reported adverse events. 

While further research, the development of new technology, optimization of MSC doses, and larger clinical trials are needed to fully evaluate the use of MSC therapy in the treatment of MS, the authors conclude that the results of this SRMA indicate that MSC therapy seems to be an efficacious therapeutic strategy for treating patients with MS. 

Source: Islam MA, Alam SS, Kundu S, Ahmed S, Sultana S, Patar A, Hossan T. Mesenchymal Stem Cell Therapy in Multiple Sclerosis: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine. 2023; 12(19):6311. https://doi.org/10.3390/jcm12196311

A Systematic Review of Mesenchymal Stem Cell Therapy in Traumatic Spinal Cord Injury

A Systematic Review of Mesenchymal Stem Cell Therapy in Traumatic Spinal Cord Injury

Spinal cord injury (SCI) is a devastating pathological condition affecting motor, sensory, and autonomic function. Additionally, recovery from a traumatic SCI (TSCI) is challenging due to the central nervous system’s limited capacity to regenerate cells, myelin, and neurological connections. 

While traditional therapeutic treatments have proven ineffective in assisting in recovery, mesenchymal stem cells (MSCs) hold significant promise for the treatment of TSCIs.  

As part of this systematic review, Montoto-Meijide et al. analyze the efficacy, safety, and therapeutic potential of MSC-based cell therapies in TSCI.

Specifically, the authors identified 22 studies fitting the objectives of this review, which provided the information needed to analyze changes in AIS (ASIA Impairment Scale) grade; to study changes in ASIA sensory and motor score; to evaluate chances in neurophysiological and urodynamic parameters; to identify changes in neuroimaging tests; and to test for the existence of adverse effects of MSC therapy. 

Typically occurring as a result of trauma related to accidents or falls, TSCIs consist of two phases, a primary and a secondary phase. Considering the progression of SCI from the primary to secondary phase, the development of a therapeutic neuroprotective approach to prevent secondary injury continues to be a priority in both clinical and basic research. 

Considering this, MSCs are currently one of the most promising therapeutic options for TCI, primarily due to their capacity for neuronal differentiation and regeneration, as well as their anti-apoptotic, anti-inflammatory, and angiogenic properties.  

The 22 studies analyzed as part of this review included 463 patients. When analyzed in terms of the objectives listed above, Montoto-Meijide et al. reported that in controlled studies patients who received MSC therapy improved their AIS by at least one grade, with most studies also demonstrating improvement in sensory cores and motor scores.  

In terms of neuroimaging evidence, the authors reported decreased lesion cavity size and decreased lesion hyperintensity. In addition, one-third of trials reported mild or moderate adverse effects related to the route of administration, and no reported serious treatment-related adverse effects. 

The authors of this review reported that their results were consistent with the findings of other recent meta-analyses conducted by other researchers and were also consistent with studies that used a large number of patients but were not included in their review.

In addition, the authors also raise several interesting points that required further study, including determining the ideal stem cell type to use, identifying the most effective route and dose of administration, and finding out which degree and stage of development of the TSCL is most receptive to MSC therapy.

While MSC therapy continues to demonstrate promising potential results, Montoto-Meijide et al. also highlight future potential therapies currently in development. These therapies include gene therapies, nanomaterials, and neurostimulation combined with rehabilitation; all three of these potential treatments have shown promise when used in patients with SCI.

Limitations of this review include the relative newness of cell therapy in TSCI made it difficult to find relative studies and most of the studies used did not have a control group, were not randomized, showed low methodological quality, and lacked detail about the process and/or patient follow-up. Considering this, the authors emphasize the need for multi-center, randomized, and controlled trials with larger numbers of patients over a long period of time as a way to draw firm conclusions regarding this therapy.

Montoto-Meijide et al. conclude the positive changes in AIS grade and in ASIA sensory and motor scores, in addition to the short- and medium-term safety of this therapy, demonstrate the potential benefit of MSC therapy in TSCI patients. 

Source: Montoto-Meijide R, Meijide-Faílde R, Díaz-Prado SM, Montoto-Marqués A. Mesenchymal Stem Cell Therapy in Traumatic Spinal Cord Injury: A Systematic Review. International Journal of Molecular Sciences. 2023; 24(14):11719. https://doi.org/10.3390/ijms241411719

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our team.

You have Successfully Subscribed!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!