Please note we will be closed 12-24-25 to 01-02-26 for the holidays. We will resume normal operations on January 5th.
Thymosin Beta 4 Improves Function with Experimental Multiple Sclerosis

Thymosin Beta 4 Improves Function with Experimental Multiple Sclerosis

Multiple sclerosis is a challenging disease for patients, caregivers, and physicians. MS takes function away from patients, causing them to lose the ability to walk, to feel, or to see. The symptoms of MS vary from patient to patient. In fact, the symptoms of multiple sclerosis can even change in the same patient over time. Wherever MS destroys covering on nerve cells, there are the symptoms of the disease. These functional deficits are challenging for caregivers who provide support for patients. MS is also challenging for physicians because it is a difficult disease to treat.

Several disease-modifying treatments have been released over the past decade that has changed the course of MS for some patients. None is a cure. As such, researchers are continually looking for new treatments for multiple sclerosis.

One of the more promising potential MS treatments is thymosin beta 4. Thymosin beta 4 is a small protein (i.e. peptide) that the body produces naturally. When the protein is injected into animals, it produces regenerative and restorative benefits such as improved wound repair and blood vessel and nerve regeneration. 

When scientists want to test new treatments for MS, they often use a model of the disease called experimental autoimmune encephalomyelitis (EAE). When researchers cause EAE in mice, it causes the mice to experience symptoms and changes that are quite similar to MS in humans. Once mice are given EAE, scientists can then see if a particular treatment can make the mice better.

This is precisely what Dr. Zhang and co-researchers accomplished; they caused experimental MS in mice and treated them with either thymosin beta 4 or placebo (saline) injections. Mice began recovering from EAE as early as 11 days after treatment with thymosin beta 4. Thymosin beta 4 treatment reduced the severity of experimental MS in mice by about half compared to those who received a placebo. The statistically significant benefit lasted at least 30 days after thymosin beta 4 treatment.

The researchers performed additional experiments to determine how thymosin beta 4 improved function in mice with EAE. Based on experiments in mouse nerve cells, thymosin beta 4 appears to reduce inflammation and increase oligodendrogenesis, which is the growth of new cells the replace the covering on nerves.

While this work was performed on mice and will need to be confirmed in humans, it is an exciting lead in the development of new therapies for MS. Since thymosin beta 4 appears to be safe, this small protein may one day be among the disease-modifying treatments for MS.

Reference: Zhang, J., et al. (2009). Neurological Functional Recovery After Thymosin Beta4 Treatment in Mice with Experimental Auto Encephalomyelitis. Neuroscience. 2009 Dec 29; 164(4): 1887-1893.

A Look into Stem Cell Therapy for Lupus

A Look into Stem Cell Therapy for Lupus

Lupus is a long-term illness which can lead to inflammation and pain in any part of the body. As an autoimmune condition, lupus is characterized by an immune response in which the body mistakenly attacks healthy tissue. Oftentimes, the condition affects the skin and joints. In serious cases, it can also affect the internal organs, such as the kidneys and heart. Common symptoms include rash, fatigue, and swollen lymph nodes. 

There is currently no cure for lupus, though medications such as anti-inflammatory drugs and immune-suppressants are used to control symptoms. In severe cases, cytotoxic drugs may be prescribed. These medications target and destroy cells that grow at a rapid rate. In the case of autoimmune conditions, the hyperactive immune system produces autoantibodies too rapidly, and the medications may help to control this response. 

Unfortunately, drugs such as cytotoxic medicines have a number of unfavorable side effects, including toxic effects on the blood and immune systems. Patients become more vulnerable to infections such as pneumonia, and hair loss is a common side effect. 

Frustratingly, lupus can be a painful and debilitating illness, and patients are left with few treatment options. Moreover, not all patients respond to medications as desired. 

Stem Cell Therapy for Lupus 

Any successful therapy for lupus should help to control the flare of symptoms and balance the body’s immune response. While achieving this harmony has proven difficult with traditional therapies, recent research suggests stem cell treatment could hold the potential in helping to manage the symptoms of this autoimmune condition. 

In particular, the intravenous administration of a patient’s own stem cells could help to regulate the body’s immune response, restoring function in the organs affected by the illness while simultaneously minimizing or eliminating the need for certain medications. 

Stem cells can give rise to virtually any cell tissue within the body. They also have the ability to repair damaged tissue because they have the ability to multiply. Within recent years, studies involving stem cell therapy have been performed, offering immense promise to patients with autoimmune conditions seeking alternative treatment options. Contact a Care Coordinator today for a free assessment!

Exosomes Protect Joints from Osteoarthritis Damage

Exosomes Protect Joints from Osteoarthritis Damage

Odds are, you or someone you know has osteoarthritis—it is that common. Osteoarthritis is a chronic inflammation and destruction of one or more joints. Osteoarthritis is the kind of arthritis most people think of when they think of “arthritis.” The disease usually causes joint pain, stiffness, and limited joint motion. Common sites of osteoarthritis are the hands, knees, feet, spine, and hips.

Unlike rheumatoid arthritis, there are few good treatments for osteoarthritis. Most people with advanced disease must take analgesics (painkillers) each day to dull the pain. Unfortunately, each painkiller comes with its own problems. Aspirin increases the risk of bleeding. NSAIDs like ibuprofen wreak havoc on the gastrointestinal system and affect the kidneys. Chronic acetaminophen can be harmful to the liver. Opioids come with the risk of dependence and addiction. The only definitive treatment for osteoarthritis is surgery, which is expensive and usually requires a long recovery period.

Mesenchymal stem cells, also known as stromal cells, have shown remarkable promise in the treatment of osteoarthritis. For example, mesenchymal stem cells taken from bone marrow or fat tissue (adipose) that are then injected into joints can protect the joint from degeneration and slow the progression of osteoarthritis. However, there are some limitations with stem cell treatment.  One issue is that only so many cells can be injected in a space at once. For these reasons, scientists have pivoted some of their focus from stem cells to the tiny packets of information stem cells release called exosomes.

Exosomes contain millions of beneficial molecules including small proteins, cytokines, RNA, microRNA, and DNA. One stem cell can release thousands of exosomes. Since the exosomes are so small, many more exosomes can be collected and injected than stem cells themselves.

Researchers recently showed that exosomes collected from mesenchymal stem cells were able to provide the same benefits against osteoarthritis in mice as bone marrow stem cells did themselves. Stem cells slowed down the clinical signs of arthritis in mice just as whole stem cells did. Exosomes also protected cartilage and other joint structures from destruction.

This research demonstrates the developing science to use exosomes to treat osteoarthritis instead of the stem cells themselves. This gives doctors (and patients) considerably more flexibility in how they approach treatment. Exosomes tend to find their way to sites of disease, meaning they may be able to be injected into a vein instead of injected in the diseased joint. In addition, patients may be able to receive a higher “dose” of exosomes when simply purified exosomes are injected. This exciting research will need to be extended to humans, but clinical trials are in the planning phase.

Reference:  Cosenza, S., Ruiz, M., Toupet, K. et al. Mesenchymal stem cells derived exosomes and microparticles protect cartilage and bone from degradation in osteoarthritis. Sci Rep 7, 16214 (2017).

Using Stem Cells to Treat Nerve Damage in Multiple Sclerosis

Using Stem Cells to Treat Nerve Damage in Multiple Sclerosis

Multiple sclerosis is an inflammatory disease of the brain and spinal cord.  The immune system mistakenly attacks the covering of nerve axons called the myelin sheath. Just as an electrical cord that has lost its insulation cannot work properly, so too is it with nerve cells that have been destroyed by MS. Unfortunately, when electrical signals (action potentials) cannot move through axons, it causes neurological problems and disability. People with MS may lose the sense of touch, the sense of sight, the ability to move or walk, and the ability to control bowel or bladder function.

While treatments for MS are intended to reduce inflammation, no treatment has been developed that can repair damaged nerve cells. Scientists recently reviewed the status of stem cell clinical trials to treat multiple sclerosis. The results are encouraging.

No fewer than 8 clinical trials have shown that mesenchymal stem cells can be safely used in patients with MS. Moreover, the phase 2 clinical trials within this group showed that various stem cell treatments reduced the severity of MS. This is especially important because mesenchymal stem cells actually reduced the number of lesions (areas of inflammation and injury) in patients with MS compared to placebo.

Importantly the review determined stem cells were able to improve MS disease and nerve destruction regardless of whether the stem cells were collected from fat tissue, umbilical cord, or bone marrow. Stem cells retrieved from fat (i.e. adipose) reduced MS relapses and delayed the progression of the disease. Likewise, fat-derived stem cells improved sexual satisfaction and improved bowel control 12 months after treatment.

Why are the results of fat-derived stem cells so exciting? Because bone marrow can be difficult to access and umbilical cord tissue must be collected from donors. On the other hand, virtually everyone has excess fat on their bodies. This fat can be safely and easily removed with a simple extraction such as liposuction. A patient’s own fat cells can be removed, processed, and re-infused as stem cell treatment. When someone uses their own stem cells, there is no risk that the body will reject the infusion (as could theoretically happen to donor stem cells).

These results are exciting and welcome information for those who suffer from multiple sclerosis. As larger clinical trials are performed and previous results are replicated, we may see an increase in stem cell treatment options to help manage the symptoms of multiple sclerosis.

Reference: Bejargafshe, M., et al. (2019). Safety and efficacy of stem cell therapy for treatment of neural damage in patients with multiple sclerosis. Stem Cell Investigation. 2019; 6:44.

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our team.

You have Successfully Subscribed!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!