Are you interested in regenerative medical treatments? Regenerative medicine, including stem cell treatments and peptide therapy, is growing in popularity with each passing year. Here we will discuss the benefits of Peptide Therapy!
Peptide therapy is an innovative way to address everything from hair loss to sexual dysfunction. Peptides are molecules that form by combining amino acids and peptide bonds. These small chains of amino acids make up proteins in various parts of the body. These are 5 of the top health benefits associated with peptide therapy.
1. Increased Hair Growth
Hair loss is one of the most common aesthetic complaints among men and women. Thinning hair can occur for a variety of reasons, including stress, nutritional deficiencies, and aging.
One way to encourage new hair growth and diminish fallout is through peptide therapy. Peptides can provide regenerative properties that reduce hair loss from conditions like alopecia and telogen effluvium.
2. Improved Sex Life
As you age, it’s normal to experience a change in your sex life due to decreasing hormones. When hormones like testosterone decline, men can experience decreased libido and poor sexual stamina. With lower estrogen levels, women often experience vaginal dryness and a general disinterest in sex.
Peptide therapy can help negate these hormonal changes and improve your overall sexual function.
3. Anti-Aging Effects
Anti-aging effects are another benefit of peptide therapy. Aging can produce a lot of changes throughout your body, from wrinkles to decreased energy. When used in conjunction with a healthy diet and exercise routine, peptide therapy may help you feel younger and ward off common signs of aging.
4. More Muscle Growth
Peptides can encourage increased muscle mass by supporting the chemical process that produces muscle growth. To form muscle, your pituitary gland releases hormones into your body.
These hormones travel throughout your body until they reach the liver. There, growth factor-1 or GF-1 is released to stimulate new muscle growth. Peptides can help encourage this process in individuals who are having trouble accumulating muscle mass due to aging or other factors.
5. Healthier Skin
One of the biggest benefits of peptide treatment is younger-looking, healthier skin. Many skincare products are now formulated with peptides to produce anti-aging effects and boost overall skin health.
Peptides work beneath the surface of the skin to reduce the appearance of wrinkles and fine lines while encouraging new collagen production. This leads to a smoother, more youthful complexion overall. To learn more about the benefits of peptide Therapy call us today at Stemedix and speak with our staff!
End-stage kidney disease (ESKD) occurs when the kidneys cannot function at a level that supports the body’s needs. The kidneys serve a critical role in the body, removing waste and excess water.
Patients with chronic kidney disease may find the functionality of their kidneys declines slowly over ten to twenty years before reaching this stage. The most common causes of ESKD are diabetes and high blood pressure.
How Is ESKD Treated?
The two primary conventional treatments for ESKD are dialysis and kidney transplants. Patients who have retained only 10%–15% of their kidney function typically require dialysis.
Dialysis takes over the following functions of the kidneys as their performance declines:
Removing excess waste, water, and salt
Maintaining safe levels of vitamins and minerals
Controlling blood pressure
Helping produce red blood cells
Frequently, patients require dialysis while they wait for a kidney transplant.
What Can Peptide BPC-157 Do for the ESKD?
Clinical studies examining peptides’ effects on restoring organ function found significant benefits in treating ESKD with peptide BPC-157. Peptides are strings of amino acids that create proteins in the body. While the body naturally produces peptides, scientists can also form them in a lab to mimic those in the body.
In a 2019 clinical case, a patient whose kidney function had declined to the point that he required five dialysis treatments a week to stay alive underwent peptide therapy to repair the organ damage.
The treatment resulted in a dramatic improvement in his kidney function and overall health. Within two months, the patient’s dialysis needs declined from five weekly treatments to one, and the peptides remarkably restored his gait, strength, and balance.
The Significance of Peptide Treatments
The importance of the healing effects of peptide treatments can’t be understated. Patients with chronic kidney failure, heart failure, and other conditions currently have minimal options through conventional medicine.
As peptide treatments and other innovative medical approaches deliver positive results, it opens the door to further studies and potential therapy options for previously untreatable conditions.
The supplement and health industries are ever-evolving. Due to the constantly changing supplement landscape, it can be difficult to sort out genuine products from fads that do not offer any real value to consumers. This article will help you better understand peptides and especially the ARA-290 peptide.
Recently, peptides have become a part of the supplement market. Peptides are essential to human life and are naturally occurring compounds that are present in every living cell. They are made of short chains of at least two amino acids and serve many different biological purposes.
Unlike many other supplements, peptides like ARA-290 can offer patients an affordable alternative to manage pain, improve symptoms, and promote healing.
What is ARA-290?
ARA-290 is a peptide that is derived from erythropoietin (EPO). EPO has been utilized for decades because of its ability to stimulate red blood cell production within bone marrow. It can also alter a patient’s blood pressure, promote cell survival, and create a neuroprotective effect.
While ARA-290 does not stimulate red blood cell production, it does offer pain-relieving and neuroprotective effects. It also has the potential to stimulate wound repair in patients with chronic diabetes, but this property is still being researched.
ARA-290 is being studied as a potential treatment for systemic lupus erythematosus, as well.
Benefits of ARA-290
The full scope of ARA-290s benefits is still being researched. However, it has the potential to decrease the user’s inflammatory pathways through a process known as paracrine signaling. It has also been linked to reduced HbA1c and improved cholesterol numbers. Studies that have produced these results are still in the trial stages.
Perhaps the most appealing possibility for ARA-290 is that it may have the ability to reduce neuropathic symptoms and stimulate natural wound repair processes.
This peptide serves as an exciting treatment option for patients that are dealing with chronic neuropathic pain and diabetes-related ailments. It can also be safely paired with other peptides like BPC-157, which has healing properties.
Sarcoidosis is a condition characterized by the presence of tiny clusters of inflammatory cells in various parts of the body. Although most commonly observed in the lungs or lymph nodes, sarcoidosis can also affect other organs in the body, including the eyes, skin, and heart[1].
One of the most common clinical manifestations associated with sarcoidosis is a dysfunction of small nerve fibers that occurs in a patchy, non-length-dependent manner, a condition more commonly known as small fiber neuropathy (SFN). Symptoms of SFN include pins-and-needles, tingling, and numbness; in severe cases, SFN symptoms can include short sensations of shock-like or burning pain, allodynia, and loss of cutaneous sensation and autonomic function.
With the specific cause of sarcoidosis still unknown, and considering recent research demonstrating the prevalence of SFN being grossly underestimated and with no known cure for the condition, Heij et al. developed this randomized double-blind pilot study to examine the safety and efficacy of ARA 290 in sarcoidosis patients with symptoms of SFN.
ARA 290 is a peptide that interacts with the innate repair receptor responsible for initiating cytoprotection, anti-inflammation, and healing. Considering that ARA 290 has been shown to reduce allodynia when tested in preclinical neuropathy models, Heij et. al. hypothesized that patients experiencing symptomatic SFN would benefit from treatment with ARA 290.
To test their hypothesis, the authors of this study enrolled 22 patients diagnosed with sarcoidosis and experiencing symptoms of SFN in either a group receiving intravenous dosing of ARA 290 or a placebo three times a week over the course of a four-week period.
At the conclusion of their study, Heij et al. observed that patients tolerated repeated intravenous infusions of ARA 290 without adverse events. The authors also observed a time-dependent, significant difference between ARA 290 and placebo groups. Specifically, ARA 290 appeared to improve autonomic and pain symptoms associated with SFN, including the severity of dry eyes, blurred vision, and muscle cramps and the severity and frequency of chest pain as assessed by the small fiber neuropathy screening list (SFNSL).
The authors concluded that their study was the first study to demonstrate that ARA 290 appears to be safe when administered repeatedly over a four-week period to sarcoidosis patients with symptoms of SFN with no abnormalities or drug-related adverse effects noted during and after dosing. ARA 290 also appeared to improve the severity and frequency of symptoms associated with SFN while also improving the quality of life and pain for these patients.
Heij et al. indicated that the primary limitations of this trial were the small sample size, patient variability of neuropathic involvement, and lack of skin biopsy or sudomotor testing evidence definitively establishing SFN. The study also demonstrated abnormalities in mechanoreception that prevented the observed reduction in the severity of symptoms as assessed by the SFNL from being fully attributed solely to the effects of ARA 290 on small-fiber function.
The observed reduction of SFN-associated symptoms combined with the acceptable safety demonstrated by frequent administrations of ARA 290 encourages a larger study to examine the potential effects of ARA 290 for sarcoidosis patients with symptoms of small fiber neuropathy.
Mitochondria are essential components of each cell in the human body. Responsible for generating the energy required for cells to complete their normal and required functions, large scale or systematic mitochondrial dysfunction, when left untreated often results in low energy, cell damage, and eventually cell death. Mitochondrial disease is most often observed in the heart, liver, muscles, kidney, and brain[1].
Considering the direct role mitochondria have on neuronal function and considering that perioperative neurocognitive disorder (PND) is one of the most commonly experienced and least understood postoperative complications (especially in elderly patients), Zhao et al. examined the specific role of the mitochondria-targeted antioxidant elamipretide (SS-31) has in preventing mitochondrial dysfunction and synaptic and memory impairment caused by oxidative stress and inflammatory responses.
Considering previous research conducted in this specific area, Zhao et al. hypothesized that elamipretide could offer protection against memory impairment experienced during neuroinflammation specifically by offering protection against mitochondrial dysfunction and by reducing oxidative stress and inflammatory response in the hippocampus.
To test this hypothesis, the authors assigned mice to one of four treatment groups: a control plus placebo group, a control plus elamipretide group, a LPS plus placebo group, or a LPS plus elamipretide group before memory performance and hippocampus-related learning were assessed through a series of open field, Morris water maze (MWM), and fear conditioning tests.
Upon completion of all assays, the authors concluded that Elamipretide:
Protected the hippocampus against LPS-induced mitochondrial dysfunction by maintaining appropriate levels of mitochondrial membrane potential (MMP) and adenosine triphosphate assay (ATP).
Reduced oxidative stress and the inflammatory response induced by LPS in the hippocampus (of mice).
Significantly decreased the death of neural cells within the hippocampus of LPS-treated mice.
Enhanced the hippocampal brain-derived neurotrophic factor (BDNF) pathway and synaptic structural complexity in mice treated with LPS.
Prevented the reduction of dendritic spines on hippocampus neurons after LPS treatment.
Although mice treated with LPS demonstrated impaired hippocampus-related learning and memory performance, Zhao et al. concluded that memory impairment caused by LPS can be significantly reduced through the introduction of the mitochondria-targeted antioxidant elamipretide. In addition, elamipretide may also have therapeutic potential when it comes to preventing damage resulting from the oxidative stress and neuroinflammation known to contribute to PND. Considering these findings, the authors call for further exploration into the use of mitochondria as a potential treatment strategy for PND.
While medical knowledge and understanding of the pathophysiology associated with neuropathic pain have increased dramatically over the last 10 years, the medical community is still finding it difficult to control the chronic pain associated with this condition.
Characterized by a wide range of clinical symptoms, including spontaneous pain, allodynia, and hyperalgesia, patients experiencing neuropathic pain and discomfort are also much more likely to experience anxiety, depression, sleep disturbances, and social isolation.
While there are several therapeutic treatment options, including pharmacotherapy, interventional therapies, physiotherapy, and cognitive intervention, less than half of those experiencing neuropathy-associated pain experience adequate pain relief after these treatments. The result is a continuous reduction in quality of life often characterized by severe side effects associated with current pharmacotherapies.
Considering that an important and common feature associated with neuropathic pain is the occurrence of peripheral and/or central inflammation thought to be caused by nerve damage, Dahan et al.’s study examined the role of the innate repair receptor in the treatment of neuropathy.
The innate repair receptor (IRR) consists of the erythropoietin receptor and the β-common (CD131) receptor and is believed to activate anti-inflammatory and tissue repair pathways in response to peripheral nerve injury. Specifically, the IRR appears to be increased in response to injury and as a way to control and/or reduce the typical neurogenic inflammatory response by isolating and destroying the toxins, pathogens, and damaged tissue associated with the injury.
One specific IRR agonist, a small peptide known as ARA 290, appeared to significantly improve symptoms of neuropathy and quality of life in patients with sarcoidosis and with type 2 diabetes (T2D); patients with T2D also showed improved metabolic profile. Treatment with ARA290 for 28 consecutive days demonstrated small nerve fiber regrowth in the cornea, but not in the epidermis.
The authors found that ARA 290 treatment was well tolerated by patients with sarcoidosis and with T2D and produced no significant adverse effects.
Dahan et al. concluded that treatment with IRR offers the potential to reduce tissue damage while also supporting healing and repair occurring as a result of a number of disease processes. Specifically, the peptide ARA 290 has demonstrated the potential to reprogram an area of inflammation and tissue damage into one of healing, growth, and repair.
The authors also point out that while there appears to be potential in the use of IRR for treating neuropathy, clinical observations have been limited to 28 days. As such, the authors also call for longer clinical trials with extended follow-up as a way to assess the full healing potential of IRR activation as disease-modifying therapy.
This website and its contents are not intended to treat, cure, diagnose, or prevent any disease. Stemedix, Inc. shall not be held liable for the medical claims made by patient testimonials or videos. They are not to be viewed as a guarantee for each individual. The efficacy for some products presented have not been confirmed by the Food and Drug Administration (FDA).
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
Subscribe To Our Newsletter
Join our mailing list to receive the latest news and updates from our team.
You have Successfully Subscribed!
Request Information Packet
We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!
Thanks for your interest!
Request Information Packet
We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!
Thanks for your interest!
Request Information Packet
We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!
Thanks for your interest!
Request Information Packet
We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!
Thanks for your interest!
Request Information Packet
We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!
Thanks for your interest!
Request Information Packet
We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!
Thanks for your interest!
Request Information Packet
We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!
Thanks for your interest!
Request Information Packet
We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!
Thanks for your interest!
Request Information Packet
We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!
Thanks for your interest!
Request Information Packet
We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!
Thanks for your interest!
Request Information Packet
We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!
Thanks for your interest!
Request Information Packet
We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!