If you or someone you care about has been diagnosed with a spinal cord injury, you understand how life-altering the challenges can be. At Stemedix, we work with patients who have already received a confirmed diagnosis and are seeking alternative ways to support their recovery goals. While no treatment guarantees a cure, regenerative medicine offers the potential to support healing and reduce the impact of symptoms through biologically active therapies.
Stem cell therapy for spinal cord injury is one such approach that may help promote cellular repair, reduce inflammation, and encourage nerve support. You won’t find exaggerated claims or comparisons here, just realistic, patient-focused information backed by experience. We customize each treatment plan using the documentation you provide, and we support you throughout your journey. This article will walk you through the basics of spinal cord injury, explain how stem cells for the treatment of spinal cord injury are used, and outline what to expect with our process.
What is Spinal Cord Injury?
A spinal cord injury (SCI) is damage to the spinal cord that disrupts communication between the brain and the body. When this pathway is damaged, the body’s ability to send and receive signals becomes impaired. That can mean a loss of movement, sensation, or automatic functions like bladder and bowel control. Most spinal cord injuries happen because of sudden trauma. Studies show that the most common causes of SCI were automobile crashes (31.5%) and falls (25.3%), followed by gunshot wounds (10.4%), motorcycle crashes (6.8%), diving incidents (4.7%), and medical/surgical complications (4.3%).
The spinal cord does not regenerate the way some tissues in the body do. This makes the injury permanent in many cases. The outcome depends on where the injury occurred and how much of the nerve pathway is still intact.
Types and Locations of Spinal Cord Injuries
Spinal cord injury (SCI) is classified by severity, complete or incomplete, and by the spinal region affected. A complete injury results in loss of all movement and sensation below the injury site, while incomplete injuries allow some function. The spinal region involved guides recovery and therapy goals.
Cervical nerve injuries (C1–C8) impact the neck, arms, hands, and breathing, with higher levels possibly requiring ventilation support. Thoracic injuries (T1–T12) affect chest and abdominal muscles, impacting balance and trunk control. Lumbar and sacral injuries (L1–S5) influence leg movement and bladder function, with outcomes varying based on injury extent and completeness.
Common Symptoms and Challenges After SCI
Patients with SCI may experience paralysis, sensory loss, chronic pain, and complications in daily functions. Spinal cord injury affects more than movement. Many patients deal with muscle spasticity, pressure injuries due to immobility, frequent urinary tract infections, and problems with body temperature control. Autonomic dysreflexia, a sudden increase in blood pressure triggered by stimuli below the injury level, is a serious risk in those with injuries at or above T6. Emotional and psychological responses, including anxiety and depression, are also common and require support.
At Stemedix, we recognize that each spinal cord injury is unique. We tailor every treatment plan based on the medical records and information you provide, not generalized assumptions. If you’re exploring stem cells for the treatment of spinal cord injury, our team is ready to walk you through options that align with your health history and functional goals.
What is Regenerative Medicine?
Regenerative medicine supports the body’s repair mechanisms by introducing biologically active materials. This field focuses on helping your body respond to damage by using living cells and biological components. Instead of masking symptoms, regenerative treatments aim to influence the cellular environment that surrounds the injured tissue. In many cases, this includes the use of stem cells and growth factors.
For individuals with a spinal cord injury, regenerative medicine introduces new options that may encourage healing responses the body struggles to activate on its own. While this type of therapy doesn’t replace rehabilitation, it may work alongside your current efforts to promote tissue stability and reduce secondary complications.
Stem Cell Therapy as a Treatment Option for SCI
Stem cell therapy for spinal cord injury is being explored to support recovery and symptom relief. Researchers are investigating how stem cells may influence the biological environment of an injured spinal cord. You won’t find a generalized approach here. Stem cell treatment for spinal cord injury is tailored to each case based on the location of injury, severity, and medical history.
The focus is not on reversing the damage or offering a cure. Instead, stem cells for the treatment of spinal cord injury may help by releasing chemical signals that support the health of nearby nerve cells, protect against further breakdown, and potentially stimulate limited repair processes. Some patients have reported improvements in muscle control, sensation, or bladder regulation, though outcomes vary and remain under study.
How Stem Cells Work to Support Healing
Stem cells can develop into specialized cell types and secrete proteins that support tissue repair. These cells have two key roles in regenerative medicine. First, they can adapt to different cell types, such as those found in the nervous system. Second, and equally important, they release helpful proteins, like cytokines and growth factors, that create a healing-friendly environment. This may reduce chronic inflammation and improve communication between nerve cells that remain intact.
In spinal cord injury cases, these cells may influence glial scar formation, improve blood flow to the damaged region, and protect vulnerable cells from oxidative stress. For example, studies have shown that transplanted mesenchymal stem cells can release brain-derived neurotrophic factor (BDNF), which plays a role in supporting neural survival.
At Stemedix, we offer regenerative therapy based on the existing diagnosis and medical documentation provided by each patient. Our approach respects the experimental nature of this therapy while offering guidance and structure throughout the process.
Potential Benefits of Stem Cell Therapy for Spinal Cord Injury
Exploring the potential benefits of stem cell therapy gives you a chance to learn how regenerative medicine may support certain aspects of your spinal cord injury recovery. While results vary for each individual, many patients report improvements in pain, movement, and physical function over time.
Pain Reduction and Muscle Relaxation
Many patients report decreased neuropathic pain and reduced muscle tension following therapy. Neuropathic pain is one of the most common and challenging symptoms following spinal cord injury. You may experience burning, tingling, or shooting sensations due to misfiring nerves. For some individuals receiving stem cell therapy for spinal cord injury, these symptoms become less intense or more manageable. This could be related to how certain types of stem cells interact with immune cells and inflammatory pathways.
Studies have suggested that mesenchymal stem cells (MSCs), for example, can release bioactive molecules that influence the environment surrounding injured nerves and even interact with neural cells in spine and brain conditions. In some cases, patients also describe less spasticity or tightness in the muscles, which can reduce discomfort during sleep or daily movement.
Improved Circulation and Motor Function
Stem cell treatment for spinal cord injury may support vascular health and contribute to smoother movement. Reduced blood flow after a spinal cord injury can limit your body’s ability to heal or respond to therapy. You might notice cold extremities, swelling, or slower wound healing. Stem cell therapy may support microvascular repair by promoting angiogenesis, the formation of new blood vessels in damaged tissues. This improved circulation helps deliver oxygen and nutrients more efficiently to the affected areas. Some individuals receiving stem cell therapy report smoother joint movement, greater control over posture, and better balance during transfer or mobility tasks.
Increased Muscle Strength and Abilities
Muscle engagement and strength may increase as nerve signals improve. After a spinal cord injury, the connection between your brain and muscles may be disrupted or weakened. Over time, this can lead to muscle wasting or limited control. For individuals receiving stem cell treatment for spinal cord injury, some report noticeable changes in muscle tone, voluntary movement, or strength, especially in the lower limbs or core. These observations tend to occur in cases where some nerve pathways remain intact.
For example, a patient with an incomplete thoracic injury might regain the ability to perform assisted standing exercises or show improvements in hip stability. While not every case leads to increased muscle output, any gains in strength can contribute to mobility training, sitting tolerance, and daily activities.
Patient Experience and Reported Outcomes
Individuals receiving therapy frequently describe improvements in mobility, energy levels, and daily activity. Each patient arrives with unique goals. Some hope to walk again. Others want to reduce fatigue or rely less on medications. After therapy, individuals often share changes that impact their quality of life, such as being able to transfer with less assistance, participate in treatment longer, or sleep more comfortably.
At Stemedix, we focus on your specific history, symptoms, and expectations before building a treatment plan. These outcomes help us communicate realistic possibilities, while always making it clear that regenerative medicine is still considered experimental.
How Stemedix Approaches Stem Cell Therapy for SCI
Every individual with a spinal cord injury has a different medical background and a different journey. That’s why your treatment experience with Stemedix begins with your history, not just your condition.
Customized Treatment Based on Patient History
Stemedix develops treatment plans based on medical records submitted by the patient. If you’ve already received a spinal cord injury diagnosis, our team starts by reviewing the medical documents you send us. This includes imaging studies, physician assessments, and any other relevant details about your injury. By focusing on those who have already completed a diagnostic evaluation, we’re able to provide a more appropriate regenerative therapy experience.
We do not perform physical exams or order MRIs. If your current records are outdated, we can help gather updated information on your behalf once you sign a simple medical release form. This makes sure that our team has the most accurate data to tailor a regenerative approach based on your unique condition, designing therapy around what your body truly needs, not generalized assumptions.
Role of Board-Certified Physicians and Care Coordinators
Each case is reviewed by board-certified physicians experienced in regenerative medicine. When you choose to move forward, your medical information is assessed by physicians who specialize in regenerative therapies. They have experience working with spinal cord injury patients and understand how stem cell therapy may support certain biological functions involved in healing.
Patients are supported by dedicated Care Coordinators who handle logistics, scheduling, and communication. You won’t be left navigating the details alone. Once your evaluation is underway, a Care Coordinator will work closely with you to keep the process on track. This includes walking you through the next steps, answering questions, and helping schedule your treatment. Having one point of contact makes the entire journey easier to follow and less overwhelming.
Patient Support Services and Accommodations
Stemedix offers assistance with travel arrangements, transportation, and medical support equipment. Whether you’re located nearby or traveling across the country, we help remove logistical barriers. Our team can coordinate hotel stays, provide complimentary ground transportation, and arrange for wheelchair-accessible options if needed.
Whether a patient is local or traveling from another state, Stemedix helps coordinate hotels and driver services to make the process more accessible. Your focus should be on preparing for therapy, not stressing over logistics.
Getting Started with Stemedix
How to Connect with a Care Coordinator
Our Care Coordinators are ready to assist you at every step. They can answer your questions, review your medical documents, and guide you through the application process. From your initial inquiry through follow-up care, they provide consistent support to help you understand the next steps in pursuing stem cell therapy for spinal cord injury.
What to Expect During the Treatment Process
Once your case is reviewed and approved by our physicians, you will receive a customized treatment plan with a scheduled date for your therapy. Treatment is provided in a licensed medical facility under the supervision of experienced professionals. After treatment, ongoing follow-up is available to monitor your progress and provide additional support as needed.
Contact Stemedix Today
If you are interested in learning more about stem cell treatment for spinal cord injury, request an information packet today. The team at Stemedix is here to guide you on your journey to better health. Call us at (727) 456-8968 or email yourjourney@stemedix.com to know more.
Degenerative disc disease (DDD) is one of the most common causes of chronic low back pain. It happens when the spinal discs, which act like cushions between the bones of the spine, begin to wear down over time. This process is often part of normal aging, but it can also be influenced by genetics, lifestyle, injuries, and overall health.
As the discs degenerate, they lose their ability to absorb shock. This can lead to pain, stiffness, and in some cases, additional spinal conditions such as herniated discs, spinal stenosis, or instability between vertebrae. People living with DDD often experience pain that limits daily activities, disrupts sleep, and decreases overall quality of life.
Conventional treatments for DDD usually begin with conservative approaches, such as physical therapy, nonsteroidal anti-inflammatory drugs (NSAIDs), chiropractic care, or acupuncture. For patients whose pain does not improve, surgery may be considered. Surgical options include procedures like spinal fusion or disc replacement. While these approaches can offer short-term relief, they often do not stop the progression of degeneration, and some patients continue to experience pain in the long run.
Because of these challenges, researchers have been looking into new ways to slow or even reverse the disc degeneration process. One of the most promising areas of research involves the use of stem cells—specifically mesenchymal stem cells (MSCs).
As part of this study, Xie et al. evaluate the clinical efficacy and safety of MSC transplantation in patients with DDD.
Why Stem Cells Are Being Studied for DDD
Stem cells are special cells that can develop into many different cell types in the body. Mesenchymal stem cells, or MSCs, are found in bone marrow, adipose tissue, and other areas. They have unique properties that make them attractive for treating degenerative conditions.
MSCs can reduce inflammation, support tissue repair, and even help create new structural material for damaged tissues. In the case of DDD, researchers believe that MSCs could help regenerate spinal discs by:
Reducing inflammation inside the disc
Stimulating the production of new, healthy disc tissue
Improving hydration of the disc, which helps maintain its cushioning ability
Animal studies have shown encouraging results, suggesting that MSC therapy could help preserve disc structure and function. Some early human studies have also suggested potential benefits. However, until recently, clinical evidence was limited and sometimes inconsistent.
To better understand whether MSCs are effective for DDD, the authors of this study performed a meta-analysis—an analysis that combines results from multiple studies to look at the bigger picture.
What the Meta-Analysis Looked At
This study by Xie et al. reviewed randomized controlled trials (RCTs), which are considered one of the most reliable types of clinical research. The researchers looked at trials that compared MSC treatment to standard care or control groups in patients with degenerative disc disease.
They evaluated two main outcomes:
Pain reduction, measured with the Visual Analog Scale (VAS). This tool asks patients to rate their pain on a scale from 0 (no pain) to 10 (worst possible pain).
Functional improvement, measured with the Oswestry Disability Index (ODI). This questionnaire looks at how back pain affects everyday activities like sitting, walking, sleeping, lifting, and social life.
They also reviewed safety outcomes, including whether MSC treatments led to more adverse events compared to control groups.
By combining results from multiple studies, the meta-analysis aimed to answer two important questions:
Does MSC therapy improve pain and function for patients with DDD?
Is MSC therapy safe?
How MSC Therapy Affects Pain
The results of the pooled analysis showed that MSC therapy was associated with significant reductions in pain scores. Patients who received MSC treatment reported lower VAS scores compared to those who did not.
When the authors looked at different time points, they found that MSC therapy reduced pain at 3 months, 6 months, 12 months, and even beyond 24 months. This suggests that the benefits are not just short-term but may continue over time.
Another way the authors measured results was by looking at how many patients achieved “clinically meaningful” pain relief. This means the improvement was large enough to make a real difference in daily life, not just a small statistical change. They found that a higher percentage of MSC-treated patients reached these meaningful improvements compared to control patients.
According to Xie et al., this demonstrates that MSC therapy doesn’t just lower average pain scores on paper—it helps more patients experience relief they can feel.
How MSC Therapy Affects Function
Pain relief is important, but for people with DDD, regaining function is just as critical. The meta-analysis showed that MSC therapy also improved ODI scores, meaning patients could perform daily activities with less difficulty.
The improvements were especially noticeable in longer-term follow-up, at 24 months or more. While shorter-term results (3, 6, and 12 months) showed trends toward improvement, the most significant functional gains appeared over time. This suggests that MSC therapy may take time to have its full effect, as the cells work to repair and stabilize the damaged disc environment.
Like with pain, more patients in the MSC groups achieved meaningful improvements in function compared to those receiving other treatments.
Safety of MSC Therapy
Safety is always a concern with new therapies. MSCs are generally considered low-risk because they do not trigger strong immune responses. In the studies included in this analysis, most patients tolerated MSC therapy well.
The most commonly reported side effects were back pain, joint pain, or muscle spasms—symptoms that were not significantly different between MSC and control groups. However, there was a small but statistically significant increase in treatment-related side effects in the MSC groups. Importantly, serious adverse events were rare and not significantly different between groups.
This means that while MSC therapy appears relatively safe, careful monitoring is still important, and more research is needed to fully understand potential risks.
Clinical Implications for Patients
The results of this meta-analysis suggest that mesenchymal stem cell therapy could offer meaningful benefits for people living with degenerative disc disease. Patients who received MSCs reported:
Reduced back pain over both short- and long-term follow-up
Improved ability to perform daily activities
Relief that was more likely to reach clinically important levels
At the same time, the therapy appeared generally safe, with no major differences in serious adverse events compared to standard treatments.
According to the authors, this makes MSC therapy a promising option for patients who have not found relief through conservative measures and want to avoid or delay surgery. However, it is important to remember that MSC treatment for DDD is still being studied. More large, high-quality clinical trials are needed to answer key questions, such as:
What is the best source of MSCs (bone marrow, fat tissue, or others)?
How many cells are needed for optimal results?
How often should treatments be repeated?
Which patients are most likely to benefit?
Until these questions are answered, MSC therapy should be considered experimental, though the evidence so far is encouraging.
Limitations of the Research
While the meta-analysis strengthens the case for MSC therapy, there are some limitations to keep in mind. The number of studies and patients included was relatively small. Some studies showed inconsistent results, and not all measured outcomes the same way.
In addition, the quality of MSC preparations can vary depending on how cells are collected, processed, and stored. Differences in patient age, health status, and stage of disc degeneration may also affect results.
These factors mean that while the findings are promising, they should be interpreted cautiously until more research is available.
The Future of MSC Therapy for DDD
Research on stem cells and regenerative medicine is moving quickly. MSC therapy represents one of the most exciting frontiers in treating degenerative disc disease because it targets the underlying cause of the condition rather than just managing symptoms.
If ongoing studies continue to show positive results, MSC therapy could become a standard treatment option in the future. It has the potential to provide long-lasting pain relief, restore function, and possibly even slow or reverse the disc degeneration process.
For now, patients interested in stem cell therapy should consult with a qualified healthcare provider to learn whether they may be a candidate for clinical trials or specialized regenerative medicine programs.
As research continues, the authors believe that MSC therapy may become an important option for patients with chronic back pain caused by disc degeneration, helping them move beyond symptom management toward true disc repair and long-term relief.
Source: Xie B, Chen S, Xu Y, Han W, Hu R, Chen M, He R, Ding S. Clinical Efficacy and Safety of Human Mesenchymal Stem Cell Therapy for Degenerative Disc Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Stem Cells Int. 2021 Sep 13;2021:9149315. doi: 10.1155/2021/9149315. PMID: 34557231; PMCID: PMC8455197.
Rheumatic diseases are a broad group of chronic conditions that affect the joints, muscles, bones, ligaments, and sometimes internal organs. They are usually the result of a malfunctioning immune system that attacks healthy tissues. This leads to inflammation, pain, stiffness, and, in some cases, permanent organ damage. Common conditions in this group include rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), systemic sclerosis (SSc), osteoarthritis (OA), ankylosing spondylitis (AS), and osteoporosis (OP).
These illnesses can significantly reduce a person’s quality of life. Many people face persistent pain, fatigue, and reduced mobility, as well as the emotional challenges of living with a lifelong condition. While current treatments such as anti-inflammatory drugs, immunosuppressants, and biologic medications help manage symptoms, they do not cure the disease. They also come with risks of side effects and may not provide enough relief for everyone.
As part of this review, Hetta et al. summarize the clinical progress of MSC therapy in rheumatic diseases, highlight key findings from preclinical and clinical studies, and discuss challenges and future directions.
Role of Mesenchymal Stem Cell Therapy in Rheumatic Disease Management
Stem cells are unique because they can renew themselves and develop into many different types of cells. Mesenchymal stem cells, or MSCs, are a type of adult stem cell that can be found in bone marrow, fat tissue, umbilical cord blood, and even skin.
MSCs are particularly interesting to researchers because they can transform into bone, cartilage, and adipose cells. They also release natural substances that reduce inflammation, calm the immune system, and support healing. These qualities make them an appealing option for treating autoimmune and inflammatory diseases such as rheumatic conditions.
Why MSCs May Help Rheumatic Diseases
In rheumatic diseases, the immune system mistakenly attacks the body’s own tissues. This sets off cycles of inflammation and damage. MSCs may help by calming the overactive immune response, encouraging the growth of protective immune cells, and releasing growth factors that repair damaged tissues.
Rather than only masking symptoms, MSC therapy aims to restore balance to the immune system and support long-term improvement. This is why it has attracted so much attention in both laboratory research and clinical trials.
Promising Results Across Rheumatic Diseases
According to the authors, research into mesenchymal stem cells (MSCs) has shown encouraging results across a variety of rheumatic diseases where current treatments often fall short. Specifically:
In lupus, MSCs appear to calm harmful immune cells, promote regulatory ones, and reduce kidney inflammation, with early trials showing improvement in patients resistant to standard drugs.
In rheumatoid arthritis, studies suggest MSCs can lower inflammatory signals, protect cartilage, and ease symptoms, particularly in severe cases. Ankylosing spondylitis, which mainly affects the spine, may also benefit from MSC therapy, as both animal and small human studies indicate reduced inflammation and pain.
For osteoarthritis, MSCs may help repair cartilage and ease joint pain, with clinical trials reporting improved function in the knees and hips.
Osteoporosis research shows MSCs may encourage bone-building cells and inhibit bone breakdown, with exosome-based approaches offering a potential “cell-free” treatment.
In systemic sclerosis, MSCs have been linked to reduced scarring and improved skin and organ function.
In rare muscle disorders like dermatomyositis and polymyositis, early studies suggest gains in muscle strength and healing where conventional therapies have failed.
Together, these findings highlight MSCs as a promising new approach across a wide spectrum of autoimmune and degenerative conditions, though more large-scale and long-term studies are needed.
Ongoing Challenges and Emerging Strategies in MSC Therapy
Despite encouraging progress, MSC therapy still faces challenges. Hetta et al. report that results are not consistent, and not every patient responds the same way. The source of MSCs, the number of cells given, and the method of delivery can all affect outcomes.
Another challenge highlighted by the authors is standardization. To move MSC therapy into widespread use, researchers need to agree on best practices for collecting, preparing, and administering these cells.
Future approaches may involve combining MSC therapy with existing medications, engineering MSCs to work more effectively, or using MSC-derived exosomes as a safer alternative to full cell transplantation.
Therapeutic Promise and Future Outlook for Rheumatic Diseases
Mesenchymal stem cells represent one of the most exciting possibilities for treating rheumatic diseases. Research so far shows potential benefits for conditions such as lupus, rheumatoid arthritis, osteoarthritis, osteoporosis, systemic sclerosis, ankylosing spondylitis, and inflammatory muscle diseases. Unlike traditional medications that only ease symptoms, MSCs may help restore immune balance and encourage tissue repair.
While more research is needed to understand the long-term effects and best methods, MSC therapy offers real hope to millions of people living with painful and disabling conditions. With continued progress, the authors believe that it may one day change the way these chronic diseases are treated and give patients new opportunities for healing and improved quality of life.
Source: Hetta HF, Elsaghir A, Sijercic VC, Ahmed AK, Gad SA, Zeleke MS, Alanazi FE, Ramadan YN. Clinical Progress in Mesenchymal Stem Cell Therapy: A Focus on Rheumatic Diseases. Immun Inflamm Dis. 2025 May;13(5):e70189. doi: 10.1002/iid3.70189. PMID: 40353645; PMCID: PMC12067559.
Multiple sclerosis (MS) is a chronic condition that affects the central nervous system, where the immune system mistakenly attacks the protective covering of nerve fibers, called myelin. This damage interrupts communication between the brain and the body, leading to symptoms such as muscle weakness, difficulty walking, fatigue, and loss of coordination. MS is a complex disease with varying patterns. Some people experience relapsing and remitting symptoms, while others develop progressive forms that steadily worsen over time.
Current treatments for MS focus on reducing the frequency of relapses, managing symptoms, and slowing disease progression. However, these treatments are often limited in their effectiveness, especially in severe or progressive forms of the disease. Some medications can also cause significant side effects, including flu-like symptoms, skin irritation, or increased risk of infections. This has led researchers to explore new therapeutic strategies, including the use of mesenchymal stem cells (MSCs).
In this review, Islam et al. assess the effectiveness and safety of MSC therapy in individuals diagnosed with MS.
Understanding Mesenchymal Stem Cells
MSCs are a type of adult stem cell found in multiple tissues, such as bone marrow, adipose, and umbilical cord tissue. They are known for their ability to grow and differentiate into various cell types, including bone, cartilage, and nerve cells. MSCs also produce molecules that help regulate inflammation and support tissue repair.
Because of these properties, MSCs have been investigated as a potential therapy for many conditions, including heart disease, spinal cord injury, and autoimmune disorders. In MS, researchers believe MSCs could help repair damaged nerve cells, reduce inflammation, and potentially slow or even reverse disease progression.
Clinical Evaluation of MSC Therapy for MS
This systematic review and meta-analysis by Islam et al. examined the effectiveness and safety of MSC therapy in patients with MS. This study pooled data from multiple clinical trials, looking at how patients’ conditions changed after receiving MSC treatment. The main measure used to track improvement was the Expanded Disability Status Scale (EDSS), a standard tool used in MS research to evaluate mobility, coordination, and overall neurological function.
The analysis found that approximately 40% of patients experienced improvements after MSC therapy. Another 33% remained stable, while about 18% saw a worsening of their condition. According to the authors, these results suggest that MSC therapy could have a meaningful impact on disease progression for a significant proportion of MS patients.
Safety Profile of MSC Therapy
Safety is a critical consideration for any new treatment. In this meta-analysis, no major complications were reported. Some minor side effects, including headaches, fever, urinary tract infections, and respiratory infections, were observed. Most of these were mild and manageable, indicating that MSC therapy is generally well-tolerated.
Interestingly, the source of the MSCs appeared to influence the therapy’s effectiveness. MSCs derived from umbilical cord or placental tissue were associated with higher improvement rates (57%) compared to MSCs derived from bone marrow (38%). According to the authors, these differences may be related to factors such as lower immunogenicity, higher cell proliferation capacity, and non-invasive collection methods for umbilical cord or placental MSCs.
Routes of MSC Administration and Effectiveness
MSCs can be delivered intravenously or directly into the cerebrospinal fluid through intrathecal injection. The study found that intravenous administration resulted in better outcomes, with 58% of patients showing improvement, compared to 33% for intrathecal administration. This information may guide future treatment protocols and clinical decisions.
Mechanisms of MSC Therapy in MS
The therapeutic effects of MSCs in MS are thought to be driven by their ability to modulate the immune system and promote nerve repair. In MS, immune cells such as T helper cells and microglia contribute to inflammation and nerve damage. MSCs can shift the balance of these immune cells, reducing harmful inflammation while encouraging protective and repair-oriented responses.
Additionally, MSCs may directly support the regeneration of neurons and glial cells, which are essential for maintaining the structure and function of the nervous system. By promoting a healthier environment for nerve cells, MSC therapy has the potential to improve neurological function and slow disease progression.
Insights from Clinical Trials
Several clinical trials have evaluated MSC therapy for MS, both as randomized controlled studies and observational research. The pooled data from these trials support the therapy’s potential to improve or stabilize neurological function. Early reports also confirm its safety, with minimal serious adverse events.
Studies suggest that factors such as patient age, disease severity, and the origin of MSCs influence outcomes. For example, younger donor cells and MSCs from umbilical cord or placental tissue appear to have higher efficacy. Intravenous administration also seems more effective than intrathecal delivery.
Comparison with Conventional MS Treatments
Existing MS treatments, such as disease-modifying drugs like Ocrelizumab, Fingolimod, and Teriflunomide, are effective for some patients but often fall short in severe or progressive cases. Side effects and long-term risks can also limit their use. MSC therapy offers a novel approach by potentially repairing nerve damage rather than simply managing symptoms or suppressing the immune system. For patients who do not respond well to conventional treatments, MSC therapy may provide a new option.
Current Limitations and Future Research Directions
While MSC therapy shows promise, there are still unanswered questions. Clinical trials vary in terms of the number of patients, dosage, source of MSCs, and methods of administration, which can make it challenging to compare results. There is also a need for larger, long-term studies to determine the most effective protocols and confirm the durability of treatment benefits.
Future research will likely focus on optimizing MSC doses, identifying the best cell sources, and refining delivery methods. Researchers also aim to better understand the mechanisms by which MSCs promote repair and reduce inflammation in the nervous system.
Future Outlook for MSC Therapy in Multiple Sclerosis
Mesenchymal stem cell therapy represents a promising new approach for treating multiple sclerosis. Many patients experience improvements or maintain stability after receiving MSCs, and serious adverse events are rare. The therapy’s ability to modulate the immune system, support nerve repair, and promote tissue regeneration sets it apart from conventional treatments.
Ongoing research is focused on refining MSC therapy protocols, determining optimal dosages, and assessing long-term outcomes. Larger, high-quality clinical trials will be essential to establish MSC therapy as a reliable and effective option for people living with MS.
For patients exploring new treatment possibilities, MSC therapy offers hope for improved neurological function, better quality of life, and potential disease stabilization.
Source: Islam MA, Alam SS, Kundu S, Ahmed S, Sultana S, Patar A, Hossan T. Mesenchymal Stem Cell Therapy in Multiple Sclerosis: A Systematic Review and Meta-Analysis. J Clin Med. 2023 Sep 30;12(19):6311. doi: 10.3390/jcm12196311. PMID: 37834955; PMCID: PMC10573670.
Chronic back pain is one of the most common health complaints worldwide, especially among older adults. As the population continues to age, spinal conditions such as intervertebral disc degeneration (IDD) are becoming increasingly common. These conditions not only cause physical discomfort but also impact mental well-being, reduce mobility, and lead to increased healthcare costs.
Researchers are exploring innovative solutions to slow or even reverse spinal degeneration. Among the most promising developments is stem cell therapy. This approach aims to restore the health and function of spinal discs using the body’s own regenerative capabilities. As scientists uncover more about the biology of the spine and the potential of stem cells, new opportunities for long-lasting relief are emerging.
In this review, Zhang et al. summarize and analyse the current evidence on stem cell therapy for IDD.
Understanding the Structure and Function of the Intervertebral Disc
The spine is made up of vertebrae separated by intervertebral discs. These discs function as cushions that absorb shock and help the spine move flexibly. Each disc consists of three main parts: the nucleus pulposus (NP) at the center, the surrounding annulus fibrosus (AF), and the cartilaginous endplates (CEPs) on the top and bottom.
The NP is rich in water and proteoglycans, which help it resist compression. It is surrounded by the AF, a tough, layered ring of collagen fibers that provides structural stability. The CEPs connect the discs to the vertebrae and allow for nutrient exchange between blood vessels and the largely avascular disc.
When these structures begin to deteriorate, the disc loses its ability to support and cushion the spine. This breakdown is known as intervertebral disc degeneration. Over time, the disc becomes dehydrated, the structure weakens, and inflammation increases. These changes can compress nearby nerves, leading to pain, stiffness, and limited movement.
The Degenerative Process and Its Impact on the Spine
IDD can begin as early as a person’s 20s, but it becomes much more common with age. As NP cells decline and the extracellular matrix (ECM) breaks down, the disc’s water content decreases. This causes the disc to shrink and stiffen, altering spinal mechanics and leading to a chain reaction of damage in surrounding structures.
Inflammation plays a major role in disc degeneration. Pro-inflammatory cytokines such as interleukins (IL-1, IL-6, IL-8) and tumor necrosis factor-alpha (TNF-α) promote the production of enzymes that degrade the ECM. These cytokines reduce the synthesis of proteoglycans, weaken the disc’s ability to absorb shock, and increase pain.
In advanced stages of IDD, the disc may bulge or herniate, pressing against spinal nerves and causing chronic back pain, sciatica, or even more serious complications like spinal stenosis. Because the disc has limited blood supply, its capacity for self-repair is minimal. Traditional treatments often focus only on symptom relief rather than restoring disc health.
Current Approaches and Their Limitations
Conventional treatments for IDD range from physical therapy and anti-inflammatory medications to steroid injections and, in severe cases, surgery. These methods may provide short-term relief but do not address the underlying causes of disc degeneration.
Surgical options such as spinal fusion or disc replacement may stabilize the spine or remove damaged tissue, but they come with risks such as infection, nerve injury, or limited mobility. Surgery also does not regenerate the disc or replace lost NP cells. Because of these limitations, there is growing interest in regenerative therapies that aim to heal the disc itself.
The Promise of Stem Cell Therapy
Stem cells are capable of transforming into many different cell types, including those needed for disc repair. They also release signaling molecules that help reduce inflammation, promote healing, and support tissue regeneration.
Several types of stem cells are currently being explored for IDD treatment. Mesenchymal stem cells (MSCs) are the most commonly used and can be derived from bone marrow, adipose (fat) tissue, or umbilical cord tissue. These cells have shown promise in preclinical studies for their ability to differentiate into NP-like cells, restore disc structure, and improve spinal function.
Other stem cell types include intervertebral disc-derived stem cells (such as NP stem cells and AF stem cells) and pluripotent stem cells like embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs). While these cells have potential, their use is often limited by ethical concerns, tumorigenic risks, or complex handling requirements.
Supporting Evidence from Laboratory, Animal, and Clinical Studies
Laboratory and animal studies have provided strong evidence that stem cells can help repair degenerated discs. In animal models, stem cell injections have been shown to reduce inflammation, restore disc height, and increase ECM production. Some early clinical trials in humans have also reported improvements in back pain and disc structure after stem cell treatment.
However, outcomes vary depending on the cell type, delivery method, and patient characteristics. In some studies, high doses of injected cells caused adverse effects, including inflammation or unintended cell migration. Clinical trials with hematopoietic stem cells (HSCs), for example, showed positive effects in animals but limited benefit in human patients.
Overall, while the potential is clear, the authors call for more standardized protocols and long-term data to confirm the safety and effectiveness of stem cell therapies for IDD.
Challenges and Considerations in Cell Delivery
One of the major challenges in applying stem cell therapy for IDD is delivering the cells safely and effectively into the disc space. Improper injection techniques can damage the disc or lead to infection. Moreover, the harsh, low-oxygen environment inside degenerated discs can limit stem cell survival.
Another concern is cell leakage. Without a reliable carrier, injected stem cells may migrate away from the target area, reducing their therapeutic benefit or even causing side effects like bone spur formation. To overcome these obstacles, researchers are developing advanced scaffolds and carriers to contain the cells and control their release.
These carriers are typically made from biocompatible materials like hydrogels or microcapsules. They not only help anchor the cells in place but also create a supportive environment for them to survive, proliferate, and differentiate into NP-like cells. Carriers can also be combined with growth factors like TGF-β3 to enhance stem cell activity and ECM production.
The Role of Co-Culture Systems and Nanomaterials
Scientists are also exploring the use of co-culture systems—growing stem cells alongside other cell types to promote more natural interactions. For example, bone marrow-derived MSCs co-cultured with chondrocytes or NP cells have shown increased production of collagen and proteoglycans, both critical for disc structure and function.
Nanotechnology is playing a growing role as well. Self-assembling peptide nanofibers and other nanoscale scaffolds can guide stem cells to migrate, attach, and differentiate in precise ways. These materials help mimic the native environment of the disc, encouraging more effective regeneration.
Recent experiments in animal models using these technologies have demonstrated promising results in disc repair, including restored disc height and improved spinal biomechanics.
Drug Delivery Strategies to Enhance Stem Cell Function
In addition to using carriers and scaffolds, researchers are incorporating drug delivery systems into stem cell therapy. By loading therapeutic agents—such as growth factors or signaling molecules—into nanoparticles, scientists can influence stem cell behavior more precisely.
For example, studies have shown that loading albumin/heparin nanoparticles with the molecule SDF-1α and injecting them into degenerated discs enhances the ability of MSCs to home in on the disc, survive, and begin the repair process. These combined strategies are shaping the next generation of regenerative therapies for IDD.
Future Outlook for Stem Cell Therapy in Disc Degeneration
Stem cell therapy represents one of the most exciting developments in the treatment of intervertebral disc degeneration. Unlike current treatments that only relieve symptoms, stem cell approaches offer the possibility of regenerating damaged discs and restoring spine health at its source.
Efforts are currently underway to refine the technology, optimize cell carriers, and develop safer, more reliable delivery methods. The ability to tailor stem cell treatments to individual patients—through personalized medicine—may further enhance the effectiveness of these therapies.
Source: Zhang, W., Sun, T., Li, Y. et al. Application of stem cells in the repair of intervertebral disc degeneration. Stem Cell Res Ther 13, 70 (2022). https://doi.org/10.1186/s13287-022-02745-y
Chronic low back pain (cLBP) remains one of the most prevalent and disabling conditions worldwide, significantly affecting the quality of life and productivity for millions of individuals. For those dealing with discogenic cLBP—pain caused by degeneration or damage to the intervertebral discs—the journey toward lasting relief is often frustrating and unsuccessful. Traditional treatment options frequently fall short, prompting a growing interest in regenerative medicine.
The objective of this study was to evaluate the safety and efficacy of a novel, pragmatic algorithm that both diagnoses and treats cLBP by first identifying annulus fibrosus tears (fissures) in the region of symptoms and then delivering targeted fibrin sealant therapy to support disc repair and functional recovery.
Limitations of Traditional Treatments
Surgical options such as spinal fusions and discectomies have long been used to manage disc-related pain. However, these procedures carry inherent risks and may inadvertently accelerate degeneration. Fusions can increase stress on adjacent discs, while discectomies may weaken the disc structure, making them less than ideal for long-term relief.
Regenerative techniques such as bone marrow aspirate concentrate (BMC) and platelet-rich plasma (PRP) injections offer more conservative alternatives. Still, they lack a crucial component—adhesive properties that enable the treatment to remain within the disc and target the damaged tissue. Without a way to stay in place, these therapies often fail to promote true disc healing.
Evaluating Fibrin Sealant as a Regenerative Option
Fibrin, a natural component of the body’s wound healing process, offers unique advantages as a regenerative therapy. As a bio-adhesive, fibrin can immediately bind to tears in the annulus fibrosus—the tough outer layer of the disc—helping to stabilize the structure and promote tissue regeneration. This property makes fibrin an ideal candidate for treating chronic discogenic pain in a minimally invasive way.
A recent study explored the use of intra-annular injections of allogeneic fibrin sealant to treat patients suffering from chronic low back pain, even after multiple failed interventions. The results are compelling and suggest a promising path forward for individuals living with this difficult condition.
Study Overview and Patient Population
This retrospective cohort study involved 827 patients who had suffered from chronic low back pain—with or without radiculopathy (leg pain due to nerve irritation)—for a minimum of six months. The average duration of symptoms before treatment was 11.2 years, highlighting the severity and chronicity of the condition in the study group.
Participants had already failed at least four invasive treatments, including PRP, BMC, epidural steroid injections, and radiofrequency neurotomies. Some had even undergone failed surgeries such as discectomies and spinal fusions. The mean patient age was 56, and the cohort included 70% men and 30% women.
To qualify, patients underwent MRI and radiographic evaluations to rule out other conditions like spinal fractures, malignancies, severe instability, or significant stenosis. Only those who met strict inclusion criteria were eligible for treatment.
Diagnostic and Treatment Process
The study utilized annulargrams, an imaging technique used during the procedure to identify annular tears within the disc. These diagnostic tools were performed concurrently with the fibrin injections, providing real-time guidance to ensure precise delivery.
Allogeneic fibrin sealant was then injected into the identified fissures in the annulus fibrosus using fluoroscopic imaging to guide placement. Because fibrin adheres directly to the tissue, it integrates with the disc and creates a scaffold for tissue repair.
This innovative approach combines diagnosis and treatment in a single session, improving efficiency and potentially reducing healthcare costs. Future research may examine the cost-effectiveness of this streamlined model.
Promising Patient Outcomes
The results of the study were highly encouraging. Significant improvement was observed at one, two, and three years after the procedure across multiple outcome measures, including the:
Oswestry Disability Index (ODI)
Visual Analog Scale (VAS)
PROMIS® Physical and Mental Health Scores
At the 12-month follow-up, 50% of patients achieved the minimum clinically important difference (MCID) in the ODI score, indicating meaningful functional improvement. Importantly, these positive outcomes were consistent across age, gender, comorbidity, and prior treatment history.
Interestingly, patients who had previously undergone surgery saw even greater relative improvement than those who had not. This finding suggests that fibrin injections may offer an effective second-line treatment for patients who did not benefit from surgical interventions.
Safety and Adverse Events
No severe adverse events or infections were reported in the study, which is consistent with existing literature showing low complication rates from interventional spine procedures. Fibrin’s natural bio-compatibility may contribute to its favorable safety profile.
Given the high safety margin and promising results, fibrin sealant appears to be a well-tolerated and effective treatment option for patients with discogenic low back pain.
Study Limitations and Future Directions
Despite its promising outcomes, the study was not without limitations. It was a retrospective analysis of prospectively collected data, and it lacked a randomized control group. Participants acted as their own controls through pre- and post-treatment comparisons. Additionally, the voluntary nature of treatment selection may have introduced selection bias.
The gender imbalance (30% female, 70% male) also limits the generalizability of results. Future studies should aim for more gender-balanced samples to better understand how the treatment performs across populations.
Patient compliance with follow-up assessments decreased over time, which may have affected the consistency of long-term outcome data. Still, the data were independently collected and analyzed by statisticians using validated tools from the Regenerative Orthobiologics Registry, which adds credibility to the findings.
To strengthen the evidence base, future studies should include randomized controlled trials (RCTs), longer follow-up periods, broader patient populations, and comparative studies against other biologics like PRP and BMC.
A New Path Forward in Regenerative Spine Care
For patients who have struggled with years of chronic low back pain, intra-annular fibrin sealant offers new hope. Its unique adhesive properties allow it to bind securely within the disc, facilitating healing where other treatments have failed. Even in patients with extensive treatment histories, including failed surgeries, fibrin sealant injections demonstrated the ability to restore function and relieve pain.
This study highlights the regenerative potential of harnessing the body’s own healing mechanisms in a minimally invasive way. It also sets the stage for larger clinical trials that can solidify fibrin sealant’s place in the treatment landscape for discogenic cLBP.
Fibrin Sealant Injections: A Breakthrough in Regenerative Treatment for Chronic Discogenic Back Pain
Intra-annular injections of allogeneic fibrin sealant represent a safe, effective, and innovative approach to managing chronic discogenic low back pain and radiculopathy. With improvements documented across both physical and mental health outcomes—and a favorable safety profile—this treatment offers a compelling alternative for patients who have not responded to traditional therapies.
As the field of regenerative medicine continues to evolve, treatments like fibrin sealant provide not only physical relief—but also hope—for those whose lives have been disrupted by chronic back pain.
Source: Pauza K, Boachie-Adjei K, Nguyen JT, Hussey Iv F, Sutton J, Serwaa-Sarfo A, Ercole PM, Wright C, Murrell WD. Long-term Investigation of Annulargrams and Intra-annular Fibrin to Treat Chronic Discogenic Low Back Pain and Radiculopathy: 1-, 2-, and 3-Year Outcome Comparisons of Patients with and without Prior Surgery. Pain Physician. 2024 Nov;27(8):537-553. PMID: 39621982.
This website and its contents are not intended to treat, cure, diagnose, or prevent any disease. Stemedix, Inc. shall not be held liable for the medical claims made by patient testimonials or videos. They are not to be viewed as a guarantee for each individual. The efficacy for some products presented have not been confirmed by the Food and Drug Administration (FDA).
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
Subscribe To Our Newsletter
Join our mailing list to receive the latest news and updates from our team.
You have Successfully Subscribed!
Request Information Packet
We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!
Thanks for your interest!
Request Information Packet
We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!
Thanks for your interest!
Request Information Packet
We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!
Thanks for your interest!
Request Information Packet
We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!
Thanks for your interest!
Request Information Packet
We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!
Thanks for your interest!
Request Information Packet
We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!
Thanks for your interest!
Request Information Packet
We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!
Thanks for your interest!
Request Information Packet
We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!
Thanks for your interest!
Request Information Packet
We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!
Thanks for your interest!
Request Information Packet
We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!
Thanks for your interest!
Request Information Packet
We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!
Thanks for your interest!
Request Information Packet
We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!