by Stemedix | Aug 1, 2020 | Stem Cell Therapy, Traumatic Brain Injury
Traumatic brain injury (TBI) occurs when sudden trauma damages the brain. While mild TBI can temporarily affect brain cells, more serious injuries can lead to bleeding, torn tissue, and bruising which can cause lasting complications. Brian damage studies have shown that stem cells may be an alternative option for patients to explore.
According to research, exogenous stem cells can target damaged brain tissue. They can then partake in the repair process by differentiating into cells that replaced the damaged tissue, while simultaneously releasing anti-inflammatory properties. These effects have the ability to promote improvements in neurological function in people with TBI.
Several types of stem cells have been studied for TBI, including:
- Mesenchymal Stem Cells: Typically retrieved from adult bone marrow, mesenchymal stem cells (MSCs) aid in tissue regeneration, the inhibition of inflammation, and the recruitment of progenitor cells to replace lost cells. Other studies have shown improvement in neurological function after MSC treatment was administered.
- Neural Stem Cells: Neural stem cells (NSCs) self-renew and can differentiate into different types of cells, including neurons. According to results from animal studies, transplanted NSCs were able to mature into different brain cells and survive for at least five months. Studies have also shown that NSC injection enhances cognitive and learning abilities, as well as motor function.
- Multipotent Adult Progenitor Cells: Known for their ability to differentiate into endothelial cells, multipotent adult progenitor cells (MAPCs) have been shown to improve memory retrieval, the ability to retain information, spatial learning, and dyskinesia (impairment of voluntary movement). These cells have particularly powerful anti-inflammatory response characteristics.
- Induced Pluripotent Stem Cells: In 2007, Japanese scientists reprogramed somatic cells into a new class that resembled embryonic stem cells, known as induced pluripotent stem cells (iPSCs). Using the TBI model, researchers have determined that iPSCs could improve neurological function after transplanted into the injured area and specifically enhance motor function.
- Endothelial Progenitor Cells: Endothelial progenitor cells (EPCs) are the precursors of vascular endothelial cells found in the bone marrow. They are recruited to the site of injury, especially after brain injury. In a brain injury model, endothelial colony-forming cells (ECFCs) showed an ability to home in on the injured area and repair the blood-brain barrier. They can enhance capillary formation and reduce inflammation.
While further research is needed on these methods of stem cell therapy, early results do show promise in their benefits for those exploring regenerative medicine options for Traumatic Brain Injury. Contact a Care Coordinator today for a free assessment!
by Stemedix | Jul 20, 2020 | Stem Cell Therapy, Neurodegenerative Diseases
Neurodegenerative diseases affect millions of people across the globe. Parkinson’s disease (PD) and Alzheimer’s disease are the two most common illnesses within this category, and as of 2016, more than five million Americans were living with Alzheimer’s disease alone. It’s estimated that the prevalence of neurodegenerative diseases will only increase in the coming years with the aging population.
Characterized by the loss of function and death of nerve cells, neurodegenerative diseases cannot currently be cured. There are medications available to control symptoms, but patients don’t always respond to these drugs as desired. Moreover, there are often side effects which can further diminish patients’ health and wellbeing.
Stem Cells for Neurodegenerative Diseases
As a promising alternative to traditional medicine, stem cell therapy is being explored as a treatment for neurodegenerative conditions. These remarkable cells act as the basis from which every other differentiated cell type in the body is created. They can self-renew and transform into nearly any cell type. With these capabilities, researchers are finding that stem cells can repair damaged neurons, thus controlling the rate of disease. In some cases, it’s possible that stem cells could even reverse some of the damage already done.
There are several different types of stem cells being investigated for neurodegenerative conditions, including:
- Tissue-specific stem cells: These stem cells can give rise to multiple organ-specific cells and are typically located in areas of the body that can self-renew, including the skin and blood.
- Mesenchymal Stem Cells (MSCs): MSCs are located within the bone marrow and can differentiate into several types of cells, including cartilage, bone, and muscle. They have strong self-renewing properties and are therefore an ideal candidate for tissue repair.
- Induced Pluripotent Stem Cells (iPSCs): iPSCs are artificially derived from adult cells and programmed back to pluripotency. This creates an unlimited source of any cell type. Although iPSCs have been used in developing medications and disease modeling, further research is needed to determine their efficacy in other types of treatment.
- Neural Stem Cells (NSCs): NSCs are derived from specific areas of the brain and are thus considered specialized cells. Like other stem cells, they are self-renewing and multipotent.
Stem Cells for Neurodegenerative Diseases
The research into how stem cells can help patients with neurodegenerative diseases is ongoing. With that being said, tremendous progress has already been made. In specific, stem cell therapy is being used to help treat the following conditions:
- Alzheimer’s Disease: Columbia University researchers have discovered a groundbreaking process through which skin cells could be converted into brain cells. With further research, this process could help to create neurons which have been compromised by conditions such as Alzheimer’s disease.
- Parkinson’s Disease: PD patients experience a decline of dopamine as brain cells are destroyed. As dopamine levels drop, patients experience a range of challenging symptoms, including issues with movement and cognition. Recently, stem-cell derived dopaminergic neurons created through ESCs and iPSCs have emerged as a potential option for replacing compromised brain cells.
ALS: ALS has puzzled researchers for decades, largely due to the inability to source motor neurons in large enough numbers for studying. Recently, however, Harvard researchers have acquired mature cells that can be manipulated back into stem cells from ALS patients, which could lay the foundation for studying new therapies. Contact a Care Coordinator today for a free assessment!
by Stemedix | Jul 13, 2020 | Stem Cell Therapy, Rheumatoid Arthritis
Rheumatoid arthritis (RA) is a chronic inflammatory condition that can affect the joints, as well as several body systems. As an autoimmune disease, RA is characterized by the body’s immune system mistakenly attacking its own healthy tissue. While other forms of arthritis, such as osteoarthritis, are caused by general wear and tear, RA targets the joint lining, resulting in swelling that will eventually erode the joints and bones.
In some cases, the inflammation can cause widespread damage throughout bodily systems such as the eyes, skin, lungs, heart, and blood vessels. Although there have been treatments available to control the symptoms of RA, in some severe cases, physical disabilities may still occur.
Can Stem Cell Therapy Help Treat Rheumatoid Arthritis?
Typically, RA is treated with immune suppressive medications such as steroids. While they may offer temporary relief, long-term use isn’t advised, as it can suppress the body’s immune response. Thus, such medications leave patients more vulnerable to infections and other illnesses. Disease-modifying anti-rheumatic drugs (DMARDs) may be prescribed as well, or biologics if needed. Nonetheless, these medications fail to address joint damage which has already occurred. Moreover, many patients fail to see significant results.
Recently, stem cell therapy has emerged as a studied and researched option to target inflamed tissue and trigger the development and anti-inflammatory agents. Mesenchymal stem cells (MSCs), in particular, have been shown to produce T regulatory cells, which help to safeguard against the self-attacking immune response seen in RA. One study on MSCs for RA demonstrated a significant decrease in pro-inflammatory agents, absent of the long-term side effects caused by traditional RA therapies.
Which Type of Stem Cells Are Used to Treat Rheumatoid Arthritis?
MSCs are a commonly used stem cell therapy option for managing symptoms of Rheumatoid Arthritis. These cells are derived from either adipose (fat) tissue from the patient or the umbilical cord (Wharton’s Jelly) following healthy births. The mothers undergo rigorous screening to ensure the safety of the cells. Because umbilical cord-derived stem cells are some of the youngest, they have longer cell lives than those derived from adults.
What Are the Benefits of Mesenchymal Stem Cells?
Since they are do not come from the blood, MSCs are considered safe and do not require phenotypic or Hyman Leukocyte Antigen (HLA) matching. Cell rejection is therefore not a concern. Mesenchymal stem cells exert a number of beneficial effects on the cells of the immune system. Mesenchymal stem cells can help fine-tune the immune system by inducing the action of regulatory T-cells potentially shifting the balance from harmful to helpful immune system function.
The benefits of MSCs leave researchers optimistic about the future of stem cells as an option for those with autoimmune conditions such as Rheumatoid Arthritis. The therapy is a worthwhile option to explore for patients seeking potential improvements for their day to day quality of life. Contact a Care Coordinator today for a free assessment!
by Stemedix | Jun 8, 2020 | Autoimmune, Stem Cell Therapy
The immune system is divided into two major entities, depending on the type of action it exerts; the innate immune system and the specific immune system.
The innate immune system, which you can think of as the first responder to foreign pathogens that try to penetrate the body. This system is also referred to as non-specific immunity because it does not differentiate between different aggressors. The main components of the innate immune system include mechanical barriers (e.g., skin, acidic environment of the stomach, cilia found in the respiratory tract) and immune cells (e.g., macrophages, natural killers, neutrophils, basophils).
The specific immune system, which implements unique immune cells and antibodies to specifically target germs. For instance, when you get infected with the stomach flu, the immune system will produce specific cells and antibodies to the proteins found on the surface of that virus. As a result, it will be ready for the next aggressive episode since it has the necessary information to target the virus.
These two entities work to complement one another to keep us alive, with thousands of foreign pathogens destroyed every day. Now that you’re familiar with the immune system, let’s see how stem cell therapy may help in these cases.
What is an autoimmune disease?
An autoimmune disease is an inflammatory and immune reaction to self-antigens. In other words, the body will attack proteins found on harmless substances, such as blood cells, neurons, and pancreatic cells. Some examples of autoimmune diseases include lupus, multiple sclerosis, and rheumatoid arthritis.
Autoimmune diseases are poorly understood, hence the absence of any curative treatment. Most therapeutic approaches focus on long-term medical management that includes taking chemotherapeutic drugs, corticosteroids, and immunomodulators. Moreover, some severe cases may require surgical interventions.
Fortunately, recent research is showing positive results in patients who underwent stem cell therapy for their autoimmune disease using mesenchymal stem cells.
How does stem cell therapy help with autoimmune disease?
Stem cells have been extensively researched for their beneficial effects on several maladies, including the ones that get triggered by a defective immune system. The way that stem cells give this result is by repairing the damaged tissues and regulating the action of immune cells. Consequently, the cells will be less likely to attack self-antigens anymore, tempering down the symptoms of the condition.
Mesenchymal stem cells are a preferred type of cell that avoid ethical issues with extracting these cells and the efficacy they showed over the past few years. Researchers reported that MSCs focus most of their action on T regulatory cells that control the reaction of the specific immune system to foreign pathogens. If this line of cells is not well-regulated, the immune system will overreact to most antigens, resulting in the classic self-inflicted damage.
There are no cures for Autoimmune conditions, and some do find relief from traditional methods. However, there are risks and side effects to consider. Hopefully, a natural alternative option like stem cell therapy can provide additional options for those seeking treatment for autoimmune conditions. Contact us today for a free consultation!
by Stemedix | Jun 1, 2020 | Stem Cell Therapy, PRP
Orthopedic injuries occur each day and from different causes. An injury can result from a fall or a trauma to a musculoskeletal part of the body (e.g., knees, hips, shoulders). Many times, age or overuse can create a more common occurrence for these types of...