Can Stem Cell Therapy Help Rheumatoid Arthritis

Can Stem Cell Therapy Help Rheumatoid Arthritis

Rheumatoid arthritis (RA) is a chronic inflammatory condition in which the immune system attacks healthy joint tissue. This abnormal immune response leads to inflammation, fluid buildup, swelling, and discomfort in the joints. RA is a chronic condition for which there is no cure, and due to the progressive nature of the disease, symptoms often worsen over time.

Current treatments for RA involve controlling the immune response to prevent further damage and alleviating joint pain. Yet, oftentimes, existing therapies fail to mitigate the damage joints have already sustained. Some research has been finding that there may be potential therapeutic effects with regenerative medicine, also known as stem cell therapy for Rheumatoid Arthritis.

Stem Cell Therapy for Rheumatoid Arthritis

Stem cells are the building blocks of virtually all specialized cells and tissue in the body. They can transform into many different cell types, and have regenerative and anti-inflammatory properties. Medical researchers have been exploring ways to leverage these powerful cells to help manage symptoms for autoimmune conditions, including Rheumatoid Arthritis. 

As the cartilage between bones becomes inflamed and wears away, the joint and surrounding bone can become damaged, too. Mesenchymal stem cells (MSCs) can develop into bone and cartilage tissue, and when isolated and injected into affected joints, could help repair damage caused by RA. 

Since RA is an inflammatory disease, it can lead to health issues beyond joint damage. Systemic inflammation, fever, weight loss, muscle weakness, and diseases of the heart and lungs can also occur over time. For this reason, combatting the widespread inflammation that occurs with the disease is critically important. According to research, MSCs can control inflammation by increasing regulatory T cells (RTCs), which help to prevent the immune system from attacking healthy tissue. 

Additional study results have shown significantly lower levels of blood markers which indicate RA at one- and three-year intervals after stem cell therapy. In these trials, patients received intravenous infusions of MSCs to treat the systemic inflammation associated with RA. In addition to reduced body-wide inflammation, patients also experienced a reduction in symptoms and improvements in physical function. 

Although there still has yet to be a definitive cure for RA, stem cell therapy has been researched as a potential option to:

  • Reduce joint inflammation and stiffness
  • Increase range of motion
  • Improve energy levels and reduce fatigue
  • Minimize joint pain and swelling

For patients interested in exploring new treatment options, MSCs may enhance a patient’s quality of life and alleviate some of the condition’s most debilitating symptoms. Contact a Care Coordinator today for a free assessment!

Five Tips for Coping with a Multiple Sclerosis Diagnosis

Five Tips for Coping with a Multiple Sclerosis Diagnosis

Receiving a multiple sclerosis diagnosis can be overwhelming. It will inevitably lead to changes in your life, and there will be some days that are more difficult than others. Yet, you’re not alone in your diagnosis: roughly one million Americans are believed to have MS. 

Fortunately, the condition and its symptoms can often be managed successfully. Treatments have come a long way since MS was first discovered, and they continue to evolve through developments such as regenerative medicine. 

If you’ve recently received a multiple sclerosis diagnosis, here are some things you can do to begin taking control. 

Familiarize Yourself with MS. 

Oftentimes, it’s the unknown that can be particularly scary when it comes to a new diagnosis. By arming yourself with facts, you’ll have a better understanding of the characteristics of MS and what to expect. Sources like the National MS Society offer comprehensive guides for newly diagnosed patients to learn about symptoms, treatment options, and other need-to-know information. 

Be Ready for Any Symptoms. 

One particularly frustrating aspect of MS is that no two people experience the same symptoms in the same ways – which means that, even if you know what the condition can cause, you won’t know when to expect which symptoms, or how severe they may be. The unpredictable nature of the disease means that MS patients have to build some degree of flexibility into their routines. You may experience pain, numbness, fatigue, and vision changes which can come and go, seemingly without any pattern. 

With that being said, keeping a journal may help you track your symptoms. It can shed light on whether treatments are working, and if there could be any triggers that you may want to avoid, such as going out during particularly cold weather. Becoming overheated, drinking alcohol, and stress are also common triggers. 

Explore Treatment Options

Promptly beginning treatment for MS could help you delay the disease’s progression. There are a number of medications which can modify the course of the disease, help you manage symptoms, and control relapses. 

You may also want to explore lifestyle management techniques, such as physical therapy and stress management. Some patients also use complementary and alternative medicine techniques, such as yoga, dietary modifications, and massage therapy. Additionally, you might explore emerging options for regenerative medicine, including stem cell therapy, which could improve symptoms and potentially even aid in rebuilding myelin sheath tissue.

Partner With The Right Healthcare Professional. 

Because MS is a chronic illness, you’ll want to find the right doctor for your needs. The original neurologist who established your diagnosis isn’t the medical professional you have to stick with; in fact, you should find a doctor who specializes in the treatment of MS. Consider looking for someone who is fellowship-trained, is actively involved in clinical trials and ongoing research, makes you feel comfortable and heard, and has an office atmosphere that puts you at ease. The Consortium of MS Centers is a comprehensive online database where you may want to begin your search. 

Exploring functional medicine is also another alternative therapy option to help manage symptoms. Home comprehensive test kits help to find diet and vitamin deficiencies and insufficiencies you may have to help correct the causes of certain symptoms experienced. Stemedix offers these home tests provided by Genova Diagnostics. 

Don’t Give Up. 

A chronic illness diagnosis is major news to process, and it will affect you emotionally. Give yourself time to go through this emotional process and experience feelings like frustration and sadness. Yet, try not to give up hope. Know that MS research is constantly evolving, and that while existing treatments can delay the disease’s progression, as further treatments are approved, results will likely only improve in the future.  Contact a Care Coordinator today for a free assessment!

Are Mesenchymal Stem Cells An Effective Treatment For Chronic Obstructive Pulmonary Disease (COPD)?

Are Mesenchymal Stem Cells An Effective Treatment For Chronic Obstructive Pulmonary Disease (COPD)?

Several recent studies have shown that adult stem cells, and specifically mesenchymal stem cells (MSC), appear to support the regeneration and protection of lung tissue, making them a very promising potential next-generation therapy option for the treatment of COPD.

Known treatments for COPD are designed to address symptoms and not the actual cause of the condition; considering that COPD continues to be among the leading causes of death among developed countries and that it’s considered to be a preventable and treatable disease there is a clear and compelling need to develop more effective therapeutic strategies.

As COPD develops, its inflammatory properties are characterized by the death of the epithelial cells, loss of the terminal air-space within the lung, and ongoing breakdown of lung tissue responsible for stability, elastic recoil, and other physiological functions essential for respiration. 

Since the damage to these cells is permanent and not repairable, researchers continue to explore the use of MSCs as a potential option to repair and restore lung structure and lung function in people living with COPD.

Currently, any therapeutic-based COPD treatment option relies on the continued use of bronchodilators and/or corticosteroids to reduce the symptoms of COPD.  While both of these drugs have been able to slow the worsening of COPD symptoms, the benefits appear to be ineffective as a long-term treatment option for even mild to moderate COPD.

Because of their capacity to induce growth of skeletal muscle cells, blood, fat, vascular systems, and connective tissues throughout the body, and since they seemingly have a capacity for self-renewal, MSCs are now being considered as a therapeutic treatment option for COPD.

In addition to their versatility throughout various cells, tissues, and systems, MSCs are relatively simple to isolate, they expand with high efficiency, are easily able to be processed and transported from the lab setting to point-of-use, and are highly compatible with different delivery methods and formulations currently being used by medical professionals.

Early research has also demonstrated that MSCs possess powerful immunosuppressive properties and are easily able to seek out and migrate to specific sites of tissue injury; this appears to be especially promising in the tissue of the lungs where not only have MSCs demonstrated the ability to suppress inflammation and growth factor production but also been found to reduce fluid retention within the lungs.

While these findings are promising, Phase II clinical trials to establish the use of Mesenchymal stem cells as a therapeutic treatment in patients with severe COPD are currently ongoing.  Specifically, this trial is examining how effective MSCs derived from normal healthy adult donors in the treatment of COPD.

Although further study is required, early indications show promise that stem cell therapy, and specifically the use of MSCs, could be a very effective therapeutic treatment option in patients with moderate to severe COPD.

Reference:  (n.d.). Mesenchymal stem cell therapy for the treatment of … – PubMed. Retrieved November 25, 2020, from https://pubmed.ncbi.nlm.nih.gov/20384521

Can Stem Cells Treat Neural Damage Caused by Multiple Sclerosis?

Can Stem Cells Treat Neural Damage Caused by Multiple Sclerosis?

Multiple sclerosis (MS) is a chronic illness that damages nerves in the brain and spinal cord. In this disease, the body’s immune system mistakenly targets and attacks the myelin in the central nervous system, or the layer of insulation around the nerves. As the autoantibodies target healthy myelin tissue, neurological disabilities ensue. While there is currently no cure for MS nor any means of repairing myelin damage to improve disease progression, results from clinical trials suggest mesenchymal stem cells (MSCs) could be effective in treating nerve damage caused by the condition. So many may be wondering “Can Stem Cells treat neural damage caused by Multiple Sclerosis”.

According to researchers, MSCs can help to control the immune response in people with Multiple Sclerosis. These cells have powerful self-renewal capabilities, in addition to immunomodulatory and neuroregenerative properties. While the precise cellular mechanisms of stem cells in treating Multiple Sclerosis are still being studied, researchers are encouraged by the results of several clinical trials thus far. 

For instance, MSCs can be targeted to the brain tissues to reach the sites of damage, including brain lesions, to help improve the survival rate of brain cells. Also administered systemically, these cells have the potential to improve one’s quality of life and severity of symptoms.

Stem cells can be retrieved from various sources, including fat tissue, umbilical cord-derived tissue, and bone marrow aspirate. The mesenchymal stem cells derived from these tissues provide the potential power in improving cognitive function and decreasing disease severity, which is likely due to the cells’ anti-inflammatory and neuroprotective characteristics. The source of cells is determined by a few factors including age, medical history, and patient preference. Results can vary from patient to patient. Their environment factors, diet, and lifestyle choices can play an important part in the outcome. However, studies have shown that stem cell therapy for those whose immune systems have been compromised has the potential to prohibit the progression of MS for up to five years in 70% to 80% of patients. This and other stem cell treatments have the potential to significantly improve treatment outcomes for people with MS. Contact a Care Coordinator today for a free assessment!

Stem Cell Science for Alzheimer’s Disease

Stem Cell Science for Alzheimer’s Disease

Alzheimer’s disease is the most common form of dementia. Among other symptoms, Alzheimer’s disease causes memory loss as nerve cells in the brain become dysfunctional and die. While the disease is known to be related to the accumulation of β-amyloid plaques and neurofibrillary tangles, how and why those things happen is still a mystery. Nonetheless, researchers have created and tested drugs to change the way the brain process β-amyloid and hyperphosphorylated tau (the substance in neurofibrillary tangles) but nothing, so far, has worked in humans. Instead, we are left with anticholinergic drugs, and memantine used to slow the progression of the disease.

These failures of drug development have forced scientists to reconsider how to treat Alzheimer’s disease. Instead of a focus on neuropathology that we cannot understand or control, why not focus on supporting nerve cells that remain or even restore the nerve cells that are lost? This is the hope of stem cell research in Alzheimer’s disease, and the focus of an extensive review article on the subject.

The review article describes the clinical possibilities of different types of stem cells:

  • Neural stem cells (NSCs)
  • Mesenchymal stem cells (MSCs)
  • Induced pluripotent stem cells (iPSCs)

Neural stem cells (NSCs)

NSCs have the magnificent ability to become any type of brain cell, be they neurons or various types of glia. NSCs would be the ideal stem cell treatment for Alzheimer’s disease except for one major problem: There are very, very few NSCs in the human brain. It is nearly impossible to harvest them in high enough numbers and, right now, we don’t have ideal ways to make them multiply and grow in a laboratory. So, while research in NSCs for the treatment of Alzheimer’s disease is well underway, they won’t be widely available any time soon. 

Mesenchymal stem cells (MSCs)

Mesenchymal stem cells can become many different types of cells and can be harvested from many places including bone marrow, umbilical cord, and adipose (fat). MSCs are very versatile, and we are improving at safely using them in various diseases, including Alzheimer’s disease. MSCs are one of the more exciting avenues of research in Alzheimer’s disease and other neurodegenerative diseases.

Induced pluripotent stem cells (iPSCs)

iPSCs are a remarkably interesting type of stem cell. They are stem cells that are created by reprogramming cells found in the skin (fibroblasts) to become other cells of interest. Researchers take fibroblasts and genetically alter them to behave like other types of stem cells or fully differentiated cells. Recent work has shown that scientists can repurpose iPSCs to become neural precursor colonies, which are a lot like NSCs described above. If one could take iPSCs from the skin and convert them into NSCs, this could truly be a treatment for Alzheimer’s disease.

Stem cell treatments provide the promising potential to help those with Alzheimer’s disease and other neurodegenerative diseases. While research is ongoing, the breakthroughs that have been recently discovered provide hope to those seeking an alternative option.

Reference: Lee, J. H., Oh, I. H., & Lim, H. K. (2016). Stem Cell Therapy: A Prospective Treatment for Alzheimer’s Disease. Psychiatry Investigation13(6), 583–589. https://doi.org/10.4306/pi.2016.13.6.583

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our team.

You have Successfully Subscribed!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!