Examining the Beneficial Effects of Autologous Mesenchymal Stem Cell Transplantation in Active Progressive Multiple Sclerosis

Examining the Beneficial Effects of Autologous Mesenchymal Stem Cell Transplantation in Active Progressive Multiple Sclerosis

Typically understood to support hematopoiesis and to produce the cells of the mesodermal lineage, mesenchymal stem cells (MSCs) found in bone marrow, fat, and other tissues of the body, have recently been found to contain additional properties that include immunomodulator and neurotrophic effects.

Considering earlier studies that have demonstrated favorable effects of MSC treatments in a variety of conditions – including stroke, multiple sclerosis, multi-system atrophy, and amyotrophic lateral sclerosis, Petrou et al. performed this double-blind study as a way to evaluate the best way of administration and the safety and clinical efficacy of MSC transplantation –  specifically in patients with active and progressive multiple sclerosis. 

The response of the 48 patients with progressive multiple sclerosis and with displaying evidence of either clinical worsening or activity during the previous year in this study were evaluated after being treated intrathecally (IT) or intravenously (IV) with autologous MSCs or with sham injections. Having identified a critical and unmet need for treatment, the goal of Petrou et al.’s study was to examine the therapeutic efficacy of MSC transplantation in this specific population.

Over the course of this controlled clinical trial, participants were randomly assigned to three treatment groups and treated (either intrathecally or intravenously) with autologous MSCs or with sham injections. At the 6-month mark, the authors of this study retreated half of the patients in both the MSC-IT and MSC-IV groups with MSCs, while the remaining participants were treated with sham injections. The same process occurred with patients initially treated with sham injections; meaning that at the 6-month mark, half were either treated with MSC-IT or MSC-IV.

Prior to the start of this study, Petrou et al. established a number of primary and secondary endpoints. Predetermined primary endpoints of this study included: the safety of the MSC-IV and MSC-IT treatments and the difference among the three groups in relation to performance on the Expanded Disability Status Scale (EDSS) at 6- and 12-month intervals.  Predetermined secondary endpoints included the difference between the sham-treated and MSC-IT or MSC-IV treated group in the number of relapses and the relapse rate, the number of MRI gadolinium-enhancing lesions, the annualized rate of change in the T2 lesion load on MRI, percent brain volume change, performance on a series of physical and cognitive functions, and the retinal nerve fiber layer thickness.

At the conclusion of this 14-month trial, the authors reported that the study demonstrated positive results in all predetermined primary endpoints. More specifically, throughout the course of this study, the authors discovered that significantly fewer patients experienced treatment failure in the MSC0IT and MSC-IV groups compared with those in the sham-treated group.  Additionally, over the course of the following year, nearly 59% and 41% of patients treated with MSC-IT and MSC-IV exhibited no evidence of multiple sclerosis activity;  this is compared with less than 10%  of patients in the sham-treated group.

Significant improvements of those receiving MSC-IT treatment (compared to sham treatment) were also observed in the following: ambulation index, the sum of functional scores, 25-foot timed walk test, 9-hole peg tests, PASAT and OWAT/KAVE cognitive tests, and newer biomarkers, including retinal nerve fiber layer and motor network. The authors also report beneficial, but less significant effects were observed in the MSC-IV groups. 

Although the authors report a number of limitations associated with this study, including a small number of patients in each group, the short duration of the study, and the crossover design of the study (which could have resulted in a “carry-over” effect from the first cycle of treatment), they also conclude that the clinically significant findings observed in patients with progressive multiple sclerosis who were previously unresponsive to traditional or conventional therapies provide clear evidence of short-term efficacy and possible indications of neuroprotection induced by administration of autologous MSCs in patients with progressive multiple sclerosis. 

In addition, the authors found that intrathecal administration of MSCs appears more beneficial than intravenous, as well as the potential benefits provided by receiving repeated injections of MSCs.

As such, Petrou et al. conclude by calling for a larger phase III study to confirm these findings and as a way to further evaluate the therapeutic potential of autologous MSCs in neuroinflammatory and neurodegenerative diseases, including active progressive multiple sclerosis.

Source:  (2020, December 1). Beneficial effects of autologous mesenchymal stem cell … – PubMed. from https://pubmed.ncbi.nlm.nih.gov/33253391/

Stem Cell Therapy Can Help to Treat Rheumatoid Arthritis

Stem Cell Therapy Can Help to Treat Rheumatoid Arthritis

There are a number of things that can cause arthritis, a painful condition that causes stiffness in joints. In Rheumatoid Arthritis (RA), the body’s immune system attacks the musculoskeletal system, causing inflammation that leads to arthritis pain. Over time, RA can cause a number of problems, including cartilage deterioration, swelling, and excess synovial fluid at the joint. In this article, we talk about how Stem Cell Therapy can help to treat Rheumatoid Arthritis.

Using Stem Cell Therapy to Treat Rheumatoid Arthritis

Because RA is a chronic condition, there is no cure. This means that treatment focuses on preventing attacks and easing symptoms. While there are medications that can help to tamp down the autoimmune response that causes RA pain, symptom management tends to rely on medication to relieve pain, which can be difficult to moderate.

Instead, some patients are seeking out stem cell therapy. Stem cells have the ability to differentiate into other cell types. By administering mesenchymal stem cells (MSCs) systemically and directly to problematic joints, it may potentially help to regrow cartilage tissue and ease pain from rheumatoid arthritis. 

How Stem Cell Therapy Can Benefit RA Patients

By taking a different approach to the treatment of RA, stem cell therapy offers potential relief that traditional treatments have not been able to provide to patients, including:

Regenerating Tissue

Because stem cells are able to differentiate into other cell types, they can be particularly useful for patients suffering from RA. When these stem cells are injected into a joint, they can help to rebuild the cartilage that cushions joints, counteracting the damage from RA.

Stem cells also have the potential to help regenerate other damaged tissues as well, including the synovium tissues, which help lubricate joints to keep them from becoming inflamed.

Regulating the Autoimmune Response

Stem cells have shown to be safe and promising in helping reduce the inflammatory response that results from the autoimmune attacks behind RA. Stem cell therapy has been used in the treatment of other autoimmune diseases, including Crohn’s disease and multiple sclerosis, and it shows promise for RA, as well. So yes, Stem Cell Therapy can help to treat Rheumatoid Arthritis.

Reducing Further RA Damage

Stem cell therapy offers the possibility of reducing further RA attacks on joints that may not yet be affected by the disease. With the potential to limit the autoimmune responses that cause RA damage and to instead encourage healing and tissue growth, stem cells may be able to slow the impact of rheumatoid arthritis. This may allow patients to experience less pain and preserve their quality of life. If you would like to schedule an appointment to treat your RA, contact a care coordinator today!

Do Athletes Get Stem Cell Injections?

Do Athletes Get Stem Cell Injections?

Athletic activities present the possibility of injury. When athletes face joint, tendon, or muscle damage, they need effective treatments to allow them to become active again. So do athletes get stem cell injections?

For many types of injuries, traditional medical approaches include surgery. However, surgeries often entail long recovery times, painful procedures, and scarring. Some athletes, such as Major League Baseball pitcher Max Scherzer, have undergone stem cell injections as an alternative. 

Stem Cell Therapies for Athletic Injuries

Max Scherzer is a pitcher for the Washington Nationals. Recently, Scherzer sustained a back injury that prevented him from playing in several games. 

He is the latest of professional athletes to use stem cell injections as a treatment for sports injuries. Many athletes have reported significant improvements in their condition following these innovative therapies. 

Understanding Stem Cells 

Stem cells are a type of simple cell. They are found in many different tissues in the human body. The body uses these cells to heal from injuries and accidents. When they are concentrated and injected into an injured area of the body, stem cells have the potential to assist with recovery. 

Stem cell injections help to expedite the body’s natural healing processes. These treatments may help to repair tendons, ligaments, and cartilage. In doing so, they represent an invaluable approach for athletic injuries. 

Stem Cell Treatments for Athletes

Most injured athletes have the same goal: to recover as quickly as possible. While this goal makes sense from a career perspective, reaching a full recovery is crucial. When they return to the game, they can feel confident that their bodies are in good working order. Full recoveries also prevent potential future injuries.

Some evidence suggests that injections of concentrated stem cells can help joints and muscles to fully recover faster. Innovative treatments, including stem cell injections, can allow athletes to regenerate new functional tissue. Oftentimes, stem cell therapies are applied in conjunction with more traditional medical approaches. These include:

Many athletes, like Scherzer, have experienced the benefits of stem cell treatments for athletic injuries. 

Noninvasive and the Beneficial Potential

Beyond acute injuries, stem cell treatments can be used to potentially treat long-lasting pain in athletes. Whether the pain is caused by a single event or a chronic condition, stem cell treatments have the potential to help patients regenerate tissue and heal naturally. Stem cell injections offer athletes a very short recovery time. Typically, patients recover in three to four days. 

When performed correctly and by an experienced board-certified provider, these injections present almost no risks of complications or infections. For athletes, the noninvasive nature of stem cell therapies and quick recovery times are invaluable. If you would like to learn more or schedule an appointment contact a care coordinator today!

Does Stem Cell Therapy Help Stroke Patients?

Does Stem Cell Therapy Help Stroke Patients?

Every 40 seconds, someone in the United States suffers a stroke. These medical emergencies are one of the most common causes of long-term disability in this country. These events, which usually result from clots that prevent blood from flowing to part of the brain, can dramatically impact the lives of both patients and their families.

Strokes can cause a range of impairments in patients, all of which can lower a patient’s quality of life. Patients can experience problems with motor control, memory, speech, and a range of other areas. Because the brain doesn’t regenerate brain cells, it can be difficult to fully recover from a stroke’s effects.

Traditionally, treatment plans for stroke patients have included a combination of several different physical therapies, including occupational and speech therapy. While this treatment method can help restore some lost functionality by rewiring the brain, there seems to be a limit on the effectiveness of this treatment, which tends to depend on the severity of the stroke.

However, recent research suggests that stem cell therapy may be able to improve long-term outcomes for stroke patients. When combined with physical therapy, stem cells can offer stroke patients significant relief from their symptoms.

How Stem Cells Are Used to Treat Stroke Patients

Because stem cell therapy is still relatively new in treating stroke patients, several studies are currently investigating different methods for administering stem cells. These research projects will determine which strategies are most effective for different types of stroke patients. 

For example, one study looks at how stem cells isolated from patients who have suffered strokes can potentially help regenerate brain tissue. In another study, scientists have examined the effectiveness of extracellular vesicles, which are substances derived from stem cells. Both of these studies show a great deal of promise for stroke patients. 

One promising study is investigating injecting stem cells into the damaged area of the stroke patient’s brain. Once these special cells are in the brain, they can potentially start regrowing brain cells.

Benefits of Stem Cell Therapy

When used in conjunction with physical therapies, stem cells can improve neurological stroke symptoms, including muscle control, vision problems, and speech deficiencies. They also show promise in suppressing brain inflammation, one of the significant obstacles to recovering from a stroke.

While there is no “cure” for stroke patients, stem cell therapy offers an exciting new frontier in helping their recovery and improving their quality of life. If you would like to learn more contact a care coordinator today!

Stem Cell Treatment for Lou Gehrig’s Disease (ALS)

Stem Cell Treatment for Lou Gehrig’s Disease (ALS)

For those who are suffering from Lou Gehrig’s Disease — now commonly referred to as Amyotrophic Lateral Sclerosis (ALS) — finding treatment for the condition can seem like a never-ending quest. Stem cells have been used for several years to treat a wide variety of diseases, and many of these treatments point to the potential for further exploration. 

Some of the beneficiaries of this process are ALS sufferers. Although there is no cure for ALS, stem cell therapy offers the chance to slow the progression of the disease while also helping to control its symptoms. While there are currently drug treatments available to address the disease, they all have side effects and may offer only limited means of controlling ALS.

In contrast, regenerative medicine, also known as stem cell therapy, offers a new avenue for pursuing ALS treatment, one that shows promising potential for improving patient outcomes over the long term. Regenerative medicine provides patients another path to managing their condition, one that may provide improved symptoms and potential long-term benefits.

What are Stem Cells?

The primary cells used for ALS-related stem cell therapy are called mesenchymal stem cells. These cells are derived from adipose (fat) or umbilical cord (Wharton’s Jelly) cells, and they have a unique ability to differentiate themselves into a wide variety of tissues. 

Once inserted into the human body, the goal is to have them protect against cell loss by regrowing nerve cells and pathways in the brain.

Stem cell procedures like the ones used for treating ALS are generally considered to be safe, as patients rarely suffer from complications or side effects. In a study published in Neurology, for example, patients treated with mesenchymal cells did not show a markedly elevated risk for complications. 

Expected Outcomes

While stem cells for ALS patients should not be seen as a potential cure, many patients have reported improvement in some areas, including:

  • Repairs in nerve damage
  • Reduced progression of the disease
  • Motor skill improvements
  • Higher energy levels

While these results can’t be guaranteed for all patients, they represent major steps forward for those who have not had success with traditional treatments or those who need more help in dealing with progressively worse symptoms of ALS.

Like many treatments for ALS, stem cell therapy is considered to be experimental, which means that it does not have approval from the FDA. However, regenerative medicine may offer a window to an improved patient experience by easing symptoms of the disease that would otherwise be debilitating. If you would like to learn more or schedule a consultation, contact a care coordinator today!

Can Stem Cells Help Manage Chronic Orthopedic Problems?

Can Stem Cells Help Manage Chronic Orthopedic Problems?

Orthopedic conditions can present many challenges to patients. Chronic orthopedic problems often result in ongoing pain and discomfort. Traditional medical approaches to injuries and joint-related ailments often require painful surgeries. These invasive procedures can involve difficult and extended recovery times. Common examples of orthopedic problems include:

Fortunately, many patients have found relief for their chronic orthopedic problems through stem cell therapies.

Understanding Stem Cell Therapy

Regenerative Medicine, also known as stem cell therapy, is a new area of medical science that is showing promise for patients facing chronic conditions.

Mesenchymal stem cells (MSC) are naturally produced by the body. They are a type of “simple” cell that can be used to develop a wide range of complex cells. When they are properly administered into an injured or affected area on the patient’s body, stem cells can:

  • Help to alleviate inflammation.
  • Promote healing processes.
  • Generate new tissues.

Stem cells can be collected from umbilical cord, bone marrow, or adipose (fat) tissues. Once extracted, a board-certified professional can use a concentration of MSCs to administer to targeted areas of the body. In some instances, the provider may use imaging technology to ensure that the injection is placed accurately.

Stem Cell Therapy for Chronic Orthopedic Conditions

Over the past thirty years, doctors and patients have seen many benefits to MSC therapy. In many cases, these alternative treatments can help patients to avoid surgery and relieve pain.

Stem cell therapy is non-invasive. Stem cell therapies are not cure-all treatments and cannot be a guarantee. They provide an option for management of symptoms and to help halt or slow down the progression of one’s condition. For some conditions, other therapies may be necessary.

A therapy provider may recommend stem cell treatments in conjunction with platelet-rich plasma (PRP) therapy. PRP therapy involves concentrating platelets from the patient’s blood and injecting them into the soft tissue of painful joints. When used to supplement MSC therapies, PRP may help to:

  • Reduce joint pain
  • Slow cartilage destruction
  • Stimulate cell repair and growth rate
  • Provide a faster level of healing

Research suggests that many patients with chronic orthopedic conditions may be helped by MSC therapies. For instance, MSC therapy has been shown to potentially halt the progressive symptoms of osteoarthritis. These exciting and innovative treatments offer many potential benefits to patients who are suffering from chronic orthopedic conditions. If you would like to learn more then contact us today and speak with a care coordinator. 

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our team.

You have Successfully Subscribed!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!