Recent breakthroughs in the field of regenerative medicine continue to support the tremendous healing potential of stem cell therapy. Until a few years ago, stem cell research was limited to only what could be gathered from the research gathered from embryonic stem cells; this research was limited by the well-documented ethical concerns surrounding the practice of harvesting stem cells from embryonic sources.
Fortunately, alternative – and less controversial – sources of stem cells, harvested primarily from autologous bone marrow and adipose tissue have demonstrated promise in treating many diseases ranging from autoimmune conditions to myocardial infarctions.
Considering this, the ability of adult stem cells to undergo division and multipotent differentiation has garnered the attention of spinal surgeons and specialists around the world, specifically for the potential benefits of these stem cells in the treatment of a variety of spine issues related to neural damage, muscle trauma, disk degeneration as well as it potential in supporting bone and spine fusion.
Stem Cells in Spine Surgery
Although the rate of spinal surgery, and specifically lumbar, cervical and thoracolumbar fusions, has continued to rapidly increase over the last 20 year, there has not yet been a breakthrough in surgical technology that has consistently demonstrated the ability to reduce reoperation rates associated with these procedures; additionally, these procedures have demonstrated little success in reducing the issue of pseudoarthrosis in patients.
As a result, spinal surgeons have begun experimenting with using stem cells to support the process of bone growth and fusion. As stem cell research continued to evolve, the discoveries of the ability of mesenchymal stem cells (MSCs) harvested from bone marrow, adipose tissue, and skeletal muscle differentiate when cultivated in the correct microenvironment has led to the realization that these stem cells demonstrated a significant effect of the process of spinal fusion.
Adding to the potential benefits of these stem cells are several animal model studies confirming the benefits of the much more available, and much easier harvested adipose-derived stem cell (ADSC). In fact, several of these animal studies have confirmed similar fusion results observed when comparing MSCs and ADSCs.
Stem Cells in Disc Regeneration
Changes occurring in the discs of the spine and specifically starting in the second decade of life, contribute to decreased disc height that contributes to the impingement of nerves and the development of lower back pain consistent with Degenerative Disc Disease.
Until recently, treatment of Degenerative Disc Disease was limited to conservative management techniques, including work and lifestyle modifications, physical therapy, medication, and epidural injections, or surgery in the form of disc replacement or spinal fusion.
Although realizing the actual effects of stem cells therapy for treating this condition has been limited in humans (primarily due to concerns associated with the potential for an immune reaction to allogeneic stem cells in humans), several animal studies have demonstrated decreased disc degeneration as well as significant improvement in height and hydration of previously damaged discs. In addition, small-scale studies in humans have demonstrated improvements in pain and disability within three months of stem cell treatment.
Considering this, Schroeder J et al. call for larger clinical trials designed to further explore the benefits associated with using stem cell therapy to treat Degenerative Disc Disease.
Stem Cells in Treatment of Spinal Cord Injury (SCI)
Spinal Cord Injury (SCI) resulting from damage to the spinal cord most often is the result of motor vehicle accidents, falls, or injuries occurring during sports, work, or in the home; currently, the World Health Organization (WHO) estimates that worldwide between 250,000 and 500,000 people suffer an SCI each year[1].
SCIs range in severity, but most often are accompanied by some degree of tissue damage and/or cell death. As a result, spine surgeons have been exploring the potential of stem cell transplantation with the hope of supporting functional recovery after an SCI is sustained.
There are several phases associated with SCI. Regardless of the specific phase associated with an SCI, scientists have realized that creating a microenvironment that enhances neuron and axon regeneration appears to be the most desirable outcome of stem cell therapy. It is hypothesized that this is best achieved by suppression of the inflammation that typically accompanies cell apoptosis and necrosis.
Although embryonic stem cells appear to provide greater differentiation than adult stem cells, the ethical concerns surrounding their use have limited further exploration of these potential benefits. However, to date, adult mesenchymal stem cells (MSCs) used in the treatment of SCI have not demonstrated immunologic reactions and have demonstrated the potential to promote axonal regeneration, suppress demyelination, induce nerve regeneration, and induce nerve regeneration.
Unfortunately, the in vivo differentiation of MSCs into neuron-like cells has been documented to be inefficient, meaning that MSCS is currently not capable of directly repopulating or physically restoring the tissue damaged in SCI.
While there have since been studies exploring the transplantation of neural stem cells (NSC) that have demonstrated sensory and motor improvements after stem cell transplantation and when combined with other cell and growth factors, these improvements were not statistically significant. Considering this, the authors of this study indicate that it’s difficult to provide a definitive statement on the clinical potential of stem cell therapy for the treatment of SCI.
In conclusion, the authors point out that there are additional areas, including iatrogenic nerve and muscle injury resulting from spinal surgery, that have not yet been clinically addressed. The authors also point out that greater standardization of in vitro experimentation and animal models may aid in the speed of translation of stem cell therapy in spinal surgery.
Multiple sclerosis (MS) is a progressive and disabling autoimmune disease that affects the brain and central nervous system. As MS progresses, the body’s immune system attacks the protective sheath (myelin) that covers nerve fibers resulting in axonal damage and loss that eventually results in paralysis of the limbs; the condition also contributes to a number of other serious communication problems between your brain and the rest of the body[1], including numbness, tremors, and issues affecting vision and speech.
To date, no effective therapeutic medication or treatment for MS exists and medication prescribed for this disease is done so for the purpose of alleviating symptoms and chronic inflammation associated with it; several of these drugs, and especially those with immunomodulatory and immunosuppressive properties have demonstrated to be only partly effective in easing autoimmune reactions.
While current immunotherapies have demonstrated to be effective in reducing the reactivity of autoimmune anti-myelin and MS relapse rate, there remains no approved method for treating or slowing progression of the disease or for repairing myelin damaged as a result of it. As a result, Bejargafshe et al. point out that finding an appropriate clinical treatment for improvement of the neurological damage caused by MS is essential.
The authors also call attention to the numerous studies demonstrating the benefits of mesenchymal stem cells (MSCs) in creating a number of different of autoimmune conditions, including modulating the immune response in MS patients. MSCs are specific multipotent and self-renewing stem cells that have demonstrated to be differentiated into several cell types and can be easily isolated from bone marrow and adipose tissue; this means the patient can serve as a donor for him/herself without risk of rejection.
Bejargafshe et al.’s study reviews several clinical trials evaluating the effectiveness of MSC therapy for MS patients, including several specific clinical trials examining the effectiveness of bone marrow-derived MSCs, adipose-derived MSCs (ADMSCs), USMSCs, human fetal-derived neural stem cells (hNSCs), MSC-derived neural progenitors (MSC-NPs), and hematopoietic stem cells (HSC).
The authors of this study conclude that cell-based therapies, including those mentioned in this study, have shown to repair the CNS, protect against inflammation caused by an autoimmune response, are safe and effective, and demonstrate new opportunities for preventing and treating a wide range of neurodegenerative diseases, including MS.
In addition, the authors concluded that while nearly all of the various types of stem cells evaluated provide benefits, adult MSCs, because of their safety and ease of extraction, are the most common source of stem cells used for this application, with bone marrow being the major source of MSCs used. Clinical trials indicate the observed multipotency and highly-differentiated potential of UC stem cells also make them a viable treatment option, but the need to maintain a supply of UC stem cells through cell banks limit their appeal on the basis of availability.
Interestingly, among the potential cell therapies evaluated, adult adipose stem cells (ASC) appear to be among the most suitable cells for the treatment of MS. In addition to being very safe to use, adult ASCs are easy to separate from adipose tissue, are available from several different parts of the body, are available in a large concentration per unit area, and relatively inexpensive when used in a stem cell transfusion. Considering the benefits listed above, as well as those observed in clinical studies, the authors conclude that ASCs and HSCs are appropriate candidates for the treatment of MS.
Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease or Lou Gehrig’s disease, is a disease that gradually paralyzes people because the brain is no longer able to communicate with the muscles of the body that we are typically able to move at will[1]; as ALS progresses, people will lose the ability to walk, talk, swallow, and eventually breathe.
While no treatment to prevent or even slow the progression of, ALS currently exists, recent findings indicate that neurotrophic factors (NTFs) have been shown to potentially improve the survival of motor neurons in ALS. While a single administration of NTFs has not been effective in extending the life of these motor neurons, the review suggests the direct delivery of multiple NTFs by transplantation to the CNS has proven effective in animal studies.
Specifically, the observed benefits of mesenchymal stem cells (MSC) transplanted from bone marrow or adipose suggest improved neurological stabilization in patients with ALS. As such, the authors of this review have developed a method that produces a strong synergistic effect when introducing a combined delivery of neurotrophic factors in patients with ALS.
The authors, in this review, report on the safety and clinical effects resulting from phase 1 / 2 and 2a clinical trials in which autologous MSC-NTS cells were transplanted in patients with ALS. Both of these studies were considered open-label proof of concept studies where patients were followed up for 3 months before transplantation and 6 months after receiving MSC-NTS transplantation.
No serious adverse events were associated with MSC-NTF cells intramuscular (IM) injections, intrathecal injections (IT), or a combination of both (IT+IM) during these studies.
Additionally, neurotrophic growth factor secretion of patients’ cells was shown to be induced in the MSC-NTF cells when compared to MSCs of the same patient prior to differentiation. In all samples, MSC-NTF cells demonstrated increased secretion of NTFs when compared to non-differentiated MSCs from the same patient.
As a result of this study, the authors have concluded that IT and IM injections of MSC-NTF cells in patients with ALS are safe and well-tolerated. While not the primary focus of the study, the findings also demonstrated clinically meaningful benefits specifically induced by intrathecal treatment with MSC-NTF cells, including potentially slowing the rate of ALS progression.
Considering that neurologists specializing in the treatment of ALS consider a reduction in ALS-FRS-R slope of 25% or more to be clinically significant, the change in ALS progression rate observed after MSC-NTF cell transplantation in this study may indicate a clinically meaningful effect to be confirmed in future clinical trials.
The rotator cuff is a complex network of muscles and tendons which stabilize the shoulder joint. As its name suggests, it allows you to rotate and raise the shoulder and is thus critical to the functionality of your arm. Injuries to the rotator cuff can cause pain and affect your daily life, and if they’re bad enough, may require surgery. Today, many are exploring another alternative to surgery: stem cell therapy for rotator cuff tear.
A Closer Look at Rotator Cuff Injuries
The rotator cuff can experience a partial tear or a complete tear. A partial tear occurs when the muscles that make up the cuff fray become torn, but if the damage extends through the muscle, the tear is considered complete. The tendon could pull away from the bone if left unaddressed.
Surprisingly, you won’t always experience pain with a rotator cuff tear. In fact, in 65% of cases, rotator cuff tears are considered asymptomatic. With that being said, there are still signs outside of discomfort that could indicate this shoulder problem, including:
Weakness throughout the shoulder or arm
Popping sounds or other unusual noises when moving your shoulder
Diminished ability lifting or using your arm (to wash your hair, for instance)
Pain only upon moving your arm a certain way or while lying on it
Difficulty reaching certain directions, such as up, out to the side, or behind you
Causes of Rotator Cuff Injuries
Rotator cuff tears are fairly common. An estimated two million people visit the doctor for this injury each year, though the prevalence could be much higher due to tears that go unnoticed.
Many circumstances could lead to a tear, with the most common being:
Repetitive use due to the nature of your work, such as scanning groceries, painting windows, or cleaning
Sports, such as baseball, tennis, or football
Wear and tear on the muscles that come with aging
Heavy lifting
Injury to the arm
Rotator Cuff Injury Treatment
Rotator cuff injuries must first be accurately diagnosed before you can explore treatment options. Your doctor may use an x-ray or MRI to identify the injury. From there, they may recommend traditional treatments such as physical therapy or stem cell for rotator cuff tear. Surgery could also be an option depending on the severity of your tear, but understandably, many patients wish to avoid invasive procedures.
Some patients may be good candidates for stem cell therapy. Stem cell for rotator cuff tear treatment is much less invasive than surgery, and instead uses natural healing agents (stem cells) to repair tissue, accelerate healing, and combat inflammation. The cells can even regenerate damaged tissue, allowing your shoulder to heal itself naturally. Studies for this treatment have shown promising results, such as an increase in biomechanical strength and reduced inflammation. Thus, for patients whose rotator cuff injury has begun to affect their daily lives but surgery is undesirable, stem cell therapy is a treatment option worth considering. Contact a care coordinator today!
Book Your Appointment
Rotator cuff injuries can cause pain, limited range of motion, and difficulty performing daily activities. At Stemedix, we harness the power of regenerative medicine to address the underlying causes of your injury and support the regeneration of damaged tissues.
Our stem cell therapy for rotator cuff injuries involves using mesenchymal stem cells, which have the remarkable ability to differentiate into various cell types and promote tissue repair. Schedule a consultation today!
Multiple system atrophy (MSA) is a rare, progressively degenerative neurological disorder that affects several of the central nervous system’s involuntary (autonomic) functions, including blood pressure, breathing, bladder function, and motor control.
Similar to Parkinson’s disease in both symptoms and progression, MSA has an average survival time of 7-9 years with no known treatment; the condition is generally characterized by slowed movement, rigidity of the muscles, and loss of balance.
With no effective medical treatment for MSA, current methods of treatment involve those known to reduce or manage symptoms and enhance care. However, with the rapid evolution of therapeutic treatments involving the use of stem cells, new research is exploring this application in the hopes of treating MSA and other degenerative diseases.
Stem cells and specifically adult neural, mesenchymal, and pluripotent stem cells are currently being researched in preclinical and clinical trials.
Examination of neural stem cells found in cerebral ventricles, the hippocampus, and within the striatum of the brain tissues, has revealed them to be self-renewing and have the potential to quickly differentiate. When studied in models using mice, neural stem cells were shown to mitigate into lesions of the brain, proliferate, and differentiate into three distinct types of nerve cells. Considering this, researchers believe neural stem cells to be the ideal donor cell for treating MSA. The biggest drawbacks associated with neural stem cells appear to be the difficulty associated with collecting them from the central nervous system.
Mesenchymal stem cells, or MSCs, found in bone marrow, umbilical cords, and adipose tissue are easy to obtain and have been demonstrated to be self-renewing and differentiate quickly. MSC animal models have also demonstrated improvement in Parkinson’s-associated symptoms, the ability to hinder immuno-inflammatory reactions, and the ability to improve overall cognitive ability – all without additional side effects.
Human umbilical cord blood, or hUCB-MNC, is also a known source of stem cells, and specifically mononuclear cells, which have been found to have high nerve regeneration functionality. In addition, hUCB-MNC are easy to collect, separate, and survive longer than other stem cells. When transplanted into the brain, animal studies have demonstrated hUCB-MNC’s ability to secrete nerve growth factors, repair damaged cells, and protect neurons. Other studies have shown that hUCB-MNC appears effective in treating a variety of nervous system diseases by reducing inflammation and regulating immunity within the central nervous system.
Regardless of the characteristics, benefits, and source of the various stem cells, the treatment appears to rely heavily on the method of transplantation for treating MSA. Specifically, successful transplantation relies on the stem cells’ ability to migrate to the CNS and integrate into tissues.
The lack of progress in developing successful treatment options for MSA has led to examining stem cells’ ability to self-replicate, self-renew, differentiate, and secrete neurotrophic factors as a potential treatment method for MSA and other related neurological diseases. As research evaluating the therapeutic benefits of stem cells progresses, the authors recommend continued monitoring of stem cell safety as well as the degree of survival and integration after transplantation into the human body.
This website and its contents are not intended to treat, cure, diagnose, or prevent any disease. Stemedix, Inc. shall not be held liable for the medical claims made by patient testimonials or videos. They are not to be viewed as a guarantee for each individual. The efficacy for some products presented have not been confirmed by the Food and Drug Administration (FDA).
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
Subscribe To Our Newsletter
Join our mailing list to receive the latest news and updates from our team.
You have Successfully Subscribed!
Request Information Packet
We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!
Thanks for your interest!
Request Information Packet
We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!
Thanks for your interest!
Request Information Packet
We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!
Thanks for your interest!
Request Information Packet
We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!
Thanks for your interest!
Request Information Packet
We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!
Thanks for your interest!
Request Information Packet
We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!
Thanks for your interest!
Request Information Packet
We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!
Thanks for your interest!
Request Information Packet
We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!
Thanks for your interest!
Request Information Packet
We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!
Thanks for your interest!
Request Information Packet
We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!
Thanks for your interest!
Request Information Packet
We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!
Thanks for your interest!
Request Information Packet
We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!