Symptoms of Kidney Disease

Symptoms of Kidney Disease

What is Kidney Disease?

Kidney disease, also known as renal disease or nephropathy, refers to a condition in which the kidneys are damaged or unable to function properly. The kidneys play a crucial role in filtering waste products, excess fluid, and toxins from the blood, while also maintaining the body’s electrolyte balance and producing important hormones. When kidney disease occurs, these vital functions are compromised, leading to a range of complications.

What Causes Kidney Disease?

Kidney disease can affect people of all ages and backgrounds. Kidney disease can have various causes, and understanding these underlying factors is crucial in managing the condition effectively. There are several primary causes of kidney disease:

Diabetes: Diabetes is a leading cause of kidney disease. High blood sugar levels can damage the blood vessels in the kidneys over time, impairing their ability to function properly. This condition, known as diabetic nephropathy, can progress to chronic kidney disease and ultimately lead to kidney failure.

Hypertension (High Blood Pressure): Uncontrolled high blood pressure puts excessive strain on the blood vessels in the kidneys, leading to their damage. Over time, this can result in chronic kidney disease. Conversely, kidney disease can also cause hypertension, creating a harmful cycle.

Glomerulonephritis: Glomerulonephritis refers to inflammation of the glomeruli, which are tiny filters in the kidneys responsible for removing waste from the blood. This inflammation can be triggered by infections, autoimmune disorders, or certain medications, leading to kidney damage and impaired function.

Polycystic Kidney Disease (PKD): PKD is a genetic disorder characterized by the growth of fluid-filled cysts in the kidneys. These cysts gradually enlarge and interfere with kidney function, ultimately leading to kidney failure.

Urinary Tract Obstruction: Kidney disease can also result from obstructions in the urinary tract, such as kidney stones, tumors, or an enlarged prostate gland. These blockages can disrupt the normal flow of urine, causing kidney damage and infection.

Infections: Severe or recurrent kidney infections, such as pyelonephritis, can cause inflammation and scarring of the kidneys. If left untreated, these infections can lead to chronic kidney disease.

Medications and Toxins: Certain medications and toxins can damage the kidneys if used improperly or in excessive amounts. Examples include nonsteroidal anti-inflammatory drugs (NSAIDs), certain antibiotics, and illicit drugs.

It’s important to note that some individuals may have a combination of risk factors that contribute to kidney disease. Additionally, early detection, regular monitoring, and proper management of these underlying causes can significantly slow the progression of kidney disease and help preserve kidney function. 

What Are the Symptoms?

The symptoms of kidney disease may vary depending on the stage and underlying cause but often include fatigue, swelling in the legs and ankles, frequent urination, foamy or bloody urine, persistent itching, and high blood pressure. However, in the early stages, kidney disease may be asymptomatic, making early detection and regular screening crucial, especially for individuals with risk factors.

If you suspect that you have kidney disease, it is crucial to take immediate action and seek medical attention. If kidney disease is diagnosed, it is vital to follow the advice and treatment plan provided by your healthcare professional. 

Kidney disease requires ongoing monitoring to assess kidney function, evaluate the progression of the disease, and adjust treatment if necessary. Your healthcare professional will schedule regular follow-up appointments to review your progress, conduct further tests as needed, and make any necessary adjustments to your treatment plan.

Coping with a chronic condition like kidney disease can be emotionally challenging. Consider reaching out to friends, family, or support groups who can provide encouragement, share experiences, and offer practical advice. Support from others who understand the journey can be invaluable.

Left untreated, kidney disease can lead to serious complications such as fluid retention, electrolyte imbalances, anemia, bone disorders, cardiovascular problems, and ultimately kidney failure. In end-stage renal disease, patients may require dialysis or a kidney transplant to sustain life.

What are Kidney Disease Treatments?

Management of kidney disease involves a combination of lifestyle modifications, medication, and, in some cases, medical procedures. Treatment aims to slow the progression of the disease, control symptoms, and prevent complications. Lifestyle changes may include maintaining a healthy diet with controlled salt and protein intake, staying adequately hydrated, exercising regularly, managing blood pressure and blood sugar levels, and avoiding smoking and excessive alcohol consumption.

Regenerative Medicine for Kidney Disease

Regenerative medicine holds great potential for the treatment of kidney disease. It involves the use of mesenchymal stem cells (MSCs) to stimulate the regeneration and repair of damaged kidney tissue.

MSC therapy has shown promising potential for the treatment of kidney diseases. MSCs are a type of adult stem cell that can be isolated from various sources, including bone marrow, adipose tissue, and umbilical cord tissue.

In the context of kidney disease, stem cells have been studied for their regenerative and immunomodulatory properties. They have the ability to differentiate into different cell types, including kidney cells, and can also release various growth factors and cytokines that promote tissue repair and modulate the immune response. Here are some key points regarding the potential of MSC therapy for kidney disease:

Acute Kidney Injury (AKI): MSC therapy has been investigated as a potential treatment for AKI, a sudden loss of kidney function. Studies have shown that MSCs can enhance kidney repair, reduce inflammation, and improve kidney function in animal models of AKI. Clinical trials are underway to evaluate the safety and efficacy of MSC therapy for AKI in humans.

Chronic Kidney Disease (CKD): MSC therapy holds promise for the treatment of CKD, a progressive loss of kidney function over time. MSCs have been shown to have beneficial effects on renal fibrosis, inflammation, and oxidative stress, which are key factors in CKD progression. Preclinical studies have demonstrated that MSCs can ameliorate kidney damage and improve kidney function in animal models of CKD.

Immune modulation: MSCs possess immunomodulatory properties, which can be advantageous in kidney diseases with an immune component, such as autoimmune kidney diseases (e.g., lupus nephritis). MSCs can suppress abnormal immune responses, reduce inflammation, and promote tissue repair, thereby potentially mitigating the immune-mediated damage to the kidneys.

Safety and Delivery: MSC therapy has been generally considered safe, with no significant adverse effects reported in studies. Delivery methods vary but may include intravenous infusion or direct injection into the renal tissue during surgical procedures.

Kidney disease is a condition characterized by impaired kidney function, which can arise from various causes. Early detection, regular monitoring, and appropriate management are essential to slow the progression of the disease, maintain kidney function, and prevent complications. It is important for individuals with risk factors or concerning symptoms to seek medical attention for proper evaluation and treatment.

Cartilage Repair with Mesenchymal Stem Cells in Osteoarthritis

Cartilage Repair with Mesenchymal Stem Cells in Osteoarthritis

Osteoarthritis (OA) is the most common and widespread form of arthritis, affecting an estimated 655 million people worldwide. Occurring as a result of cartilage degeneration, OA is a progressive degenerative disorder that most commonly affects the joints of the hands, hips, knees, and spine.  

Although OA can affect anyone, it is most commonly observed in older patients. In fact, all individuals over the age of 65 are believed to demonstrate some clinical or radiographic evidence of OA.  

While surgical and pharmaceutical treatment options for OA exist as a way to manage the symptoms and progression of the disease, treatment for the restoration of normal cartilage function has yet to be achieved.

Considering the tissue of joint cartilage is composed primarily of chondrocytes found in bone marrow-derived mesenchymal stem cells (BMSCs), using these specific stem cells appears to have significant potential for use in the therapeutic regeneration of cartilage. 

In this review, Gupta et al. evaluate the advances in using BMSCs and their therapeutic potential for repairing cartilage damage in OA. Evaluating current research, the authors point out that one of the key characteristics of MSCs, including BMSCs, is that they are generally hypoimmunogenic and possess immunosuppressive activity, suggesting that BMSCs could be used as allogeneic applications for cartilage repair.  

Preclinical models of OA have also demonstrated that the effects of MSC transplantation have been effective for cartilage repair. Additionally, clinical models have reported on the safety and positive therapeutic effects of MNSC administration in patients with OA. 

The authors point out that while the exact mechanism by which BMSCs regenerate articular cartilage in patients with OA is not clear, their ability to induce proliferation and tissue-specific differentiation appears to aid in the repair of damaged cartilage.

The ability of BMSCs to migrate and engraft onto multiple musculoskeletal tissues and differentiate at the site of injury while demonstrating anti-inflammatory and immunosuppressive properties demonstrate their potential as a therapeutic treatment for degenerative diseases like OA. 

While the information provided in this review demonstrates the potential of BMSCs to support treatment and recovery from the damage caused because of OA, Gupta et al. call for additional clinical studies to assess the curative properties and long-term outcome of using MCSCs for the treatment of OA before they can be used routinely as a clinical treatment for the condition.

Source: “Mesenchymal stem cells for cartilage repair in osteoarthritis – PMC.” 9 Jul. 2012, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3580463/.

Adipose Tissue-Derived Mesenchymal Stem Cells and Their Contribution to Tissue Regeneration

Adipose Tissue-Derived Mesenchymal Stem Cells and Their Contribution to Tissue Regeneration

Mesenchymal stem cells (MSCs) isolated from a wide variety of tissues and organs have demonstrated immunomodulatory, anti-inflammatory, and regenerative properties that contribute to a host of regenerative and immunomodulatory activities, including tissue homeostasis and tissue repair. The most frequently studied and reported sources of MSCs are those collected from bone marrow and adipose tissue

In this review, Krawczenkjo and Klimczak focus on MSCs derived from adipose tissue (AT-MSCs) and their secretome in regeneration processes.

Adipose tissue is the most commonly used source of MSCs, primarily because it is easily accessible and is often a byproduct of cosmetic and medical procedures. Like most MSCs, AT-MSCs are able to differentiate into adipocytes, chondrocytes, and osteoblasts; they are also able to differentiate into neural cells, skeletal myocytes, cardiomyocytes, smooth muscle cells, hepatocytes, endocrine cells, and endothelial cells.

In addition, AT-MSCs secrete a broad spectrum of biologically active factors that serve as essential components involved in the therapeutic effects of MSCs, including the ability to stimulate cell proliferation, new blood vessel formation, and immunomodulatory properties; these factors include cytokines, lipid mediators, hormones, exosomes, microvesicles, and miRNA.

Preclinical and clinical studies on AT-MSCs in tissue regeneration were demonstrated to contribute to wound healing, muscle damage, nerve regeneration, bone regeneration, and lung tissue regeneration. 

Evaluating these studies, Krawczenko and Aleksandra Klimczak conclude that AT-MSCs and their secretome are promising and powerful therapeutic tools in regenerative medicine, primarily due to their unique properties in supporting angiogenesis.  

The results obtained by the preclinical and clinical studies evaluated for this review suggest that the ability of AT-MSCs and their derivatives, including EVs and CM, to deliver a wide range of bioactive molecules could be considered as factors supporting enhanced tissue repair and regeneration.  

Source: “Exosomes in Mesenchymal Stem Cells, a New Therapeutic Strategy ….” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4308409/.

The Effect Of Cigarette Smoke On Mesenchymal Stem Cells And Dental Stem Cells – A Comparison Review

The Effect Of Cigarette Smoke On Mesenchymal Stem Cells And Dental Stem Cells – A Comparison Review

Cigarette smoking continues to be the leading contributor to preventable disease and death in the United States, including cancer, heart disease, stroke, lung diseases, diabetes, and chronic obstructive pulmonary disease (COPD). Smoking cigarettes also increases the risk of tuberculosis, certain eye diseases, and problems of the immune system, including rheumatoid arthritis.  

An abundance of clinical research has clearly shown the detrimental effects cigarette smoke has on nearly every area of the body. However, while assumed to be equally dangerous in its effect on stem cells, there is surprisingly little research exploring the negative implications of cigarette smoking on stem cells.

In this review, Nguyen et al. share findings of recent studies on the effects of cigarette smoking and nicotine on mesenchymal stem cells (MSCs), with a specific focus on dental stem cells.  

With their ability to self-renew, develop into specialized cell types, and migrate to potential sites of injury, stem cells have demonstrated the potential to build every tissue in the body and have also demonstrated great potential for tissue regeneration and associated therapeutic uses.

As the potential benefits and weaknesses of stem cells continue to be discovered, researchers have found that cigarette smoking negatively impacts the abilities of stem cells while also limiting stem cell viability for transplantation and regeneration. 

While there has been a recent decline in the percentage of U.S. adults who smoke, over 34 million U.S. adults continue to be regular cigarette smokers. Interestingly, research has demonstrated the concentration of nicotine to be significantly higher in saliva than in blood plasma following nicotine administration via cigarette, e-cigarette, and nicotine patch – in some cases measuring up to eight times higher concentrations. Considering this research and considering the established detrimental effects of e-cigarette vapor – and presumably nicotine – on teeth and dental implants, the authors of this review hypothesized that there would be a similar effect when dental stem cells are exposed to cigarette smoke. 

Reviewing the effect that cigarette smoke has on MSCs, the authors found that exposing MSCs to cigarette smoke extract (CSE) and nicotine impaired cell migration, increased early and late osteogenic differentiation markers, decreased cell proliferation, and significantly inhibited the ability of MSCs to differentiate to other types of cells.

Nguyen et al. reviewed research that determined cigarette smoke produced a negative impact on the proliferation and differentiation of dental pulp stem cells (DPSCs). Specifically, this research demonstrated a significantly higher depression of alkaline phosphatase (ALP) and osteocalcin (OC) genes in smokers when compared to nonsmokers. Additional studies found that smokers demonstrated reduced calcium deposition levels and production of ALP when compared to nonsmokers. 

Cigarette smoke and nicotine were also found to negatively affect the migration capability of dental stem cells, slowing the migration rate by up to 12% in smokers while also producing a smaller reduction of scratch wound areas when compared to nonsmokers.

While there are not many studies directly comparing the effects of cigarette smoke and nicotine on MSCs and dental stem cells, the authors conclude that dental stem cells exhibit similar characteristics to bone marrow MSCs and that both of these types of stem cells demonstrate similar negative responses upon their exposure to nicotine.  

While the authors call for further research to better understand the specific effects of cigarette smoke on dental stem cells, the authors conclude that the findings demonstrating similar responses to cigarette smoke and nicotine between dental stem cells and MSCs can be used to inform future dental stem cell studies. These findings will help dentists better identify which patients might be at an increased risk of poor healing in the oral cavity and if smoking cessation should be considered before undergoing any invasive or traumatic dental procedure, such as tooth extraction.


Source:  Comparison of the effect of cigarette smoke on mesenchymal stem ….” https://journals.physiology.org/doi/10.1152/ajpcell.00217.2020.

How Long Does Stem Cell Therapy Last for Knees?

How Long Does Stem Cell Therapy Last for Knees?

A very common question we get is ” How long does Stem Cell Therapy last for Knees? ” for those seeking this alternative treatment for the management of their knee pain. But first, we will discuss what can be behind the knee pain as a cause, who to seek a medical diagnosis, and what options a patient has. 

What Can Cause Knee Pain?

Knee pain can have various causes, leading to discomfort and limitations in daily activities. One common cause is injuries, which can occur from sudden trauma or repetitive strain. Sprains, strains, ligament tears (like the anterior cruciate ligament or ACL tears), meniscus tears, fractures, or dislocations can result in knee pain.

Degenerative conditions like osteoarthritis often affect the knee joint. Over time, the protective cartilage on the ends of the bones wears down, causing pain, stiffness, and swelling. Rheumatoid arthritis, an autoimmune disease, can also lead to knee pain due to joint inflammation.

Tendinitis, characterized by inflammation or irritation of the tendons around the knee, is typically caused by overuse or repetitive stress. Bursitis, another inflammatory condition, occurs when the small fluid-filled sacs (bursae) between bones, tendons, and muscles become inflamed.

Patellofemoral pain syndrome refers to pain around or behind the kneecap and is often caused by overuse, muscle imbalances, or improper tracking of the kneecap. IT band syndrome, on the other hand, arises from irritation or inflammation of the IT band along the outer thigh and can cause outer knee pain.

Conditions such as gout, marked by the accumulation of uric acid crystals in the joints, can lead to sudden and severe knee pain, redness, and swelling. Infections, though rare, can also cause knee pain, with symptoms including warmth, redness, and swelling.

Additional factors contributing to knee pain include ligamentous or muscular strains, bone tumors, obesity, poor biomechanics, or referred pain from other parts of the body.

If you are experiencing persistent or worsening knee pain, it is crucial to consult with a healthcare professional for a proper diagnosis so to better help the treatment planning.

Who Do I See if I Have Knee Pain?

If you have knee pain, there are several healthcare professionals you can consult with for evaluation, diagnosis, and treatment. The appropriate healthcare provider may depend on your specific situation and the severity of your knee pain. Here are some specialists who commonly deal with knee-related issues:

Primary care physician (PCP): Your first step is often to see your primary care physician. They can assess your knee pain, perform a physical examination, and provide initial treatment or refer you to a specialist if needed.

Orthopedic specialist: Orthopedic doctors specialize in the musculoskeletal system and commonly treat knee pain and related conditions. They can diagnose the underlying cause of your knee pain, recommend imaging tests, if necessary (such as X-rays or MRI), and provide both nonsurgical and surgical treatment options.

Rheumatologist: If your knee pain is suspected to be related to inflammatory or autoimmune conditions like rheumatoid arthritis, a rheumatologist can provide expertise in diagnosing and managing such conditions.

Sports medicine specialist: These specialists focus on injuries and conditions related to sports and physical activity. If your knee pain is sports-related or if you have an active lifestyle, a sports medicine specialist can help with diagnosis, treatment, and rehabilitation.

Physical therapist: Physical therapists can be involved in the treatment of knee pain, especially for rehabilitation and strengthening exercises. They can provide exercises, stretches, and techniques to improve knee function and reduce pain.

Pain management specialist: If your knee pain is chronic and not easily managed with conventional treatments, a pain management specialist can provide additional options such as medications, injections, or other interventional procedures to alleviate pain.

Are There Alternative Medicine Treatments for Helping with Knee Pain?

Yes, there are alternative medicine treatments that some individuals may consider for helping with knee pain. These alternative approaches focus on holistic and natural methods to address pain and promote overall well-being. While they may not be suitable or effective for everyone, some people find them helpful as complementary or adjunct therapies. Here are a few alternative medicine treatments that are sometimes used for knee pain:

Acupuncture: This ancient Chinese practice involves the insertion of thin needles into specific points on the body. Acupuncture is believed to stimulate energy flow and promote pain relief and healing. Some people report reduced knee pain and improved function with acupuncture.

Herbal remedies: Certain herbs and botanicals are believed to have anti-inflammatory properties and can be used topically or taken orally to alleviate knee pain. Examples include turmeric, ginger, Boswellia, and willow bark. However, it’s essential to consult with a qualified herbalist or healthcare provider before using any herbal remedies, as they can interact with medications and have potential side effects.

Topical creams and ointments: Various topical preparations containing natural ingredients like arnica, menthol, capsaicin, or essential oils are available and can be applied to the knee to provide temporary relief from pain and inflammation.

Mind-body techniques: Practices such as meditation, mindfulness, yoga, and tai chi can help manage knee pain by promoting relaxation, reducing stress, improving flexibility, and enhancing body awareness. These techniques may also improve overall physical and mental well-being.

Physical therapies: Alternative physical therapies like chiropractic care, osteopathy, or naturopathy may incorporate manual techniques, stretching, manipulation, or mobilization to address knee pain. These approaches often aim to enhance joint mobility, improve alignment, and reduce pain.

Regenerative Medicine: Also known as stem cell therapy, this regenerative medicine utilizes mesenchymal stem cells (MSCs) for joint pain by promoting healing, repair, and regeneration of damaged joint tissues. 

What is MSC Therapy for Knee Pain?

MSC (mesenchymal stem cell) therapy is a form of regenerative medicine that has gained attention as a potential treatment for knee pain and knee-related conditions. MSCs are multipotent cells that have the ability to differentiate into various cell types, including bone, cartilage, and fat cells. They also possess anti-inflammatory and immunomodulatory properties. Most people ask the question of ” How long does Stem Cell Therapy for knees last? ” With MSC Therapy for Knee Pain in mind.

The goal of MSC therapy is to promote tissue regeneration, reduce inflammation, and potentially slow down the progression of conditions such as osteoarthritis. By injecting MSCs into the knee joint, it is believed that the cells can stimulate the repair of damaged tissues, enhance cartilage regeneration, and modulate the immune response, thereby reducing pain and improving function.If you are considering MSC therapy for knee pain, it is essential to consult with a qualified healthcare professional who specializes in regenerative medicine. They can assess your specific situation, discuss the potential benefits and risks, and provide guidance on whether MSC therapy is appropriate for you as part of a comprehensive treatment plan. Looking to inquire further about how long does stem cell therapy last for knees, contact us at Stemedix today.

Role of Mesenchymal Stem Cells in Osteoarthritis Treatment

Role of Mesenchymal Stem Cells in Osteoarthritis Treatment

Osteoarthritis (OA) is the most common form of arthritis and is estimated to affect over 500 million people worldwide.  A result of the progressive deterioration of the protective cartilage that cushions the ends of the bones, OA most commonly affects the hands, knees, hips, and spine and is characterized by pain, stiffness, and loss of mobility in and around the affected areas.

Without a known way to treat and/or prevent OA from occurring, current conventional treatment of the condition typically involves a combination of prescription and OTC drugs, physical therapy, and lifestyle adjustments in an effort to treat and slow the progression of the symptoms associated with OA.

As the beneficial applications of stem cells continue to emerge, and considering their ability to replace and repair cells and tissues throughout the body, researchers believe that they can be used to treat joint disorders, including OA. The majority of the current stem cell therapies being investigated for use in treating OA use mesenchymal stem cells (MSCs), primarily due to their multilineage differentiation towards cell types in the joints and for their immunoregulatory functions. 

In this review, Kong et al. provide detailed information on OA and MSCs, share updated information on pre-clinical and clinical trials and related applications of MSCs, and discuss additional efforts on cell-based therapy for treating OA and other joint and bone diseases.

Several preclinical models have investigated MSCs in treating OA and have demonstrated success in generating cartilage from MSCs. In addition, several animal models have demonstrated the beneficial effect of MSCs on cartilage, including protecting existing cartilage, repairing defects of joint cartilage, regenerating and enhancing cartilage, and even preventing OA.  

Additionally, there have been several animal models evaluating the effects of intra-articular injection of MSCs for treating OA with researchers noting marked regeneration of tissue and decreased degeneration of articular cartilage.  

Clinical trials using MSCs to treat human joint cartilage defects have found that MSCs could be used to repair cartilage defects, improve joint function, reduce pain, and have demonstrated the potential to use MSC therapy for cartilage repair and regeneration as a way to reduce signs and symptom commonly associated with OA.

Although these studies have demonstrated the tremendous potential associated with the use of MSCs for treating OA, they have also highlighted some potential concerns associated with MSC-based therapy. These concerns include determining the specific number and type of MSCs best suited for treating OA, a better understanding of the timing and delivery strategies for the administration of MSCs, and identifying the stages of disease best suited for MSC therapy.  

Further concerns highlighted by the authors include the potential of genetic influences when using autologous MSC cells for treatment, the potential for the overall quality of MSC cells used in older patients to be too low, and the overall safety of stem cell therapy as a therapeutic treatment option for OA. 

Despite the concerns identified above, Kong et al. conclude that the advancement of regenerative medicine and innovative stem cell technology offers a unique and exciting opportunity to treat OA.  


Source: “Role of mesenchymal stem cells in osteoarthritis treatment – NCBI.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5822967/.

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our team.

You have Successfully Subscribed!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!