High-Intensity Step Training Can Help Stroke Survivors

High-Intensity Step Training Can Help Stroke Survivors

A stroke occurs when the blood supply to the brain becomes blocked. When the brain cells cannot get sufficient oxygen, they may die off, resulting in lasting symptoms such as difficulty walking and speaking. Although some challenges may be permanent, there are a number of rehabilitative therapies that can help stroke survivors recover as much function as possible. This will shed light on how High-Intensity step training can help stroke survivors.

One form of rehabilitation which has recently emerged as an effective therapy for boosting walking skills is high-step training. While rehabilitative measures typically focus on low-intensity walking to help stroke survivors restore balance and walking skills, experts believed this approach isn’t challenging enough to help patients navigate real-world scenarios. To test their theory, a research team at Indiana University School of Medicine in Indianapolis compared the patient outcomes in low-impact training programs against those from a higher-intensity stepping program.

Participants were involved in one of three programs: high-intensity steps with variable tasks, such as steps on uneven surfaces, inclines, or over obstacles while moving forward; high-intensity steps only moving forward; or low-intensity steps with variable tasks. Stroke survivors in both high-intensity groups were able to walk faster and farther than those in the low-intensity group.

In the high-intensity groups, the majority of participants (57% to 80%) made noteworthy clinical gains, but less than a third of participants made the same improvements in the low-intensity group. Participants in the high-intensity group also reported improved balance and confidence.

Although rehabilitative walking programs have historically taken a more gradual approach, these findings suggest that pushing patients to walk further, faster, and across a variety of conditions could challenge the nervous system more effectively. In doing so, stroke survivors may improve mobility and witness noticeable improvements in a shorter amount of time. All in all High-intensity step training can help stroke survivors.

Umbilical Cord Derived Mesenchymal Stem Cells Restore Function After Stroke

Umbilical Cord Derived Mesenchymal Stem Cells Restore Function After Stroke

An ischemic stroke is a devastating event. An ischemic stroke is caused when a blood clot blocks blood flow to a portion of the brain. If the blood cannot deliver oxygen and nutrients, brain cells in the affected area die. Whatever functions that area of the brain once performed are now lost—brain cells do not regenerate the same way as other cells do.

Not surprisingly, researchers are trying to find ways to restore dead brain cells so that patients can regain function. Stem cells are one of the most promising options in this pursuit. Stem cells can reduce brain damage caused by ischemia (lack of blood flow, nutrients, and oxygen). Moreover, stem cells can help animals with stroke regain neurological function.

Scientists have wondered, however, whether mesenchymal stem cells taken from the umbilical cord can achieve the same effects. Umbilical cord tissue is plentiful and the cells taken from the umbilical cord have many incredible properties.

Dr. Zhang and researchers in his group extracted mesenchymal stem cells from umbilical cord tissue collected from humans. This umbilical cord tissue is usually thrown away after a baby is born, but researchers have been collecting this material because it is rich in mesenchymal stem cells. The researchers then created ischemic strokes in rats by blocking one of the arteries to the brain. They then used stem cells to try to block the damaging effect of stroke in these rats.

The stem cells were given to the rats intravenously. The stem cells moved from the bloodstream into the brain and collected in the area of the stroke. Some of the stem cells actually became new brain cells in the damaged area. Moreover, rats treated with stem cells had better physical functioning than animals who did not receive stem cell treatment.

While this study was performed in rats, the implications for humans are profound. This work shows that mesenchymal stem cells taken from the umbilical cord are capable of improving function after stroke. This is exited news since it is much easier to obtain stem cells from umbilical cord tissue that it is from bone marrow (which requires an invasive procedure).

 

Reference: Zhang, Lei et al. (2017). Neural differentiation of human Wharton’s jelly-derived mesenchymal stem cells improves the recovery of neurological function after transplantation in ischemic stroke rats. Neural Regeneration Research. 2017 Jul; 12(7): 1103–1110.

Stem Cells Isolated from Stroke Patients Could Be Used in Stroke Treatment

Stem Cells Isolated from Stroke Patients Could Be Used in Stroke Treatment

Patients who suffer ischemic stroke have some treatment options, but many of them require immediate intervention and so are not useful if too much time has elapsed between the stroke and treatment. Therapies that employ stem cells are promising alternatives because stem cells can differentiate into brain cells and potentially help to replace tissue that has been damaged or destroyed.

A recent study published in Stem Cells and Development has shown for the first time that a specific type of stem cell – called ischemia-induced multipotent stem cells – may be able to help with such repair of brain tissue in patients who have suffered a stroke. Specifically, the research team demonstrated the technical ability to isolate the ischemia-induced multipotent stem cells from the brains of elderly stroke patients.

The scientists then used protein binding techniques to determine where in the brain these stem cells came from. They found that the cells came from areas of the brain where brain cells had been damaged or killed from the stroke. These cells were located near blood vessels and expressed certain biological markers that enabled the researchers to confirm that they qualified as stem cells. Specifically, these cells had proliferative qualities that suggested that they could potentially be used to re-populate damaged areas of the brain. The cells also showed the ability to differentiate into different types of cells, a key characteristic of stem cells used for therapeutic purposes.

This study represents a significant step in overcoming the technical challenges associated with isolating and classifying ischemia-induced multipotent stem cells. The next step for researchers will be to test the potential of these cells in stroke treatment. If researchers show that these stem cells can be used to successfully repair damaged areas of the brain – and more importantly, restore functions that were disrupted by the stroke – then physicians and scientists may be able to work together to translate these findings into therapies that are regularly used in stroke.

Reference

Tatebayashi et al. 2017. Identification of multipotent stem cells in human brain tissue following stroke. Stem Cells and Development, 26(11), 787-797.

Can Physical Therapy Boost Stem Cell Therapy Results?

Can Physical Therapy Boost Stem Cell Therapy Results?

Regenerative medicine seeks to restore the functionality of cells, tissues, organs, or genes. In particular, stem cell therapy is among the most promising forms of regenerative medicine. This is due to the fact that stem cells are not specialized cells and can, therefore, transform into any cell or tissue with which they come into contact, including that of muscle, tendon, bone, and ligament. From supporting regrowth of meniscal cartilage in the knee to the self-renewal of central nervous system (CNS) tissue, stem cell therapy has shown a potential option of treatment for a broad range of conditions and injuries.

Stem cell therapy is an emerging regenerative medicine option for those who have sustained the central nervous system (CNS) damage including traumatic brain injury, stroke, and neurodegenerative disorders such as multiple sclerosis. CNS injury is characterized by an inflammatory response, molecular imbalance, cell death, and cyst and scar formation. Researchers suggest that co-therapies, such as physical rehabilitation, could help be a potential booster for their stem cell therapy treatment outcome.

Studies have shown stem cells’ ability to aid in CNS recovery but may also suggest that while significant improvement is made, the treatment is often not enough to completely recover CNS functionality without further intervention. In conjunction with physical therapy, stem cell therapy could produce stronger results. Targeted exercises can produce beneficial effects at the anatomical and physiological levels, thereby positively influencing neural stem cell pools and improving stem cell therapy outcomes. Exercise has been shown to augment stem cell transplantation following muscular injuries in certain studies, but further research is needed to determine exactly how physical therapy and stem cell treatments can be used to support optimized recovery on a case-by-case basis.

Moving forward, it is suggested that physical therapy could help as a supplement to stem cell therapy. By partnering these two therapeutic approaches, patients may be able to potentially improve their treatment outcomes as well as enhancing functionality and quality of life.

Determining Risk Factors for Stroke-How to Be Preventative

Determining Risk Factors for Stroke-How to Be Preventative

Stroke is a serious, life-threatening condition in which the blood supply to the brain is interrupted or diminished, often resulting in permanent brain damage and disability. While nearly 800,000 people experience a new or recurrent stroke each year, these conditions are largely preventable. In fact, up to 80% of all strokes can be prevented.

Part of prevention comes from knowing to understand your risk factors. There are many factors contributing to the condition, including lifestyle, medical, and genetic factors, which are explored below.

Lifestyle Risk Factors

Smoking: Smoking can damage the blood vessels in many ways, causing thickening and narrowing and increasing the buildup of fat. This makes it more difficult for blood to get through, which can eventually lead to conditions like stroke and heart disease.

Being Overweight: Excess body weight produces similar effects: it can increase blood pressure and spike cholesterol levels, so exercising regularly and eating a diet consisting mostly of unprocessed foods can help to minimize your risk factors.

Heavy/Binge Drinking: A recent study linked frequent binge drinking to specific cardiovascular risk factors known to cause stroke, including high blood pressure, cholesterol, and blood sugar, at a younger age. The Stroke Association recommends limiting alcohol consumption to two drinks per day for men and one drink per day for women.

Medical Risk Factors

High Blood Pressure: High blood pressure puts physical pressure on your blood vessels, which can cause them to narrow, rupture, leak, or experience clots. Luckily, high blood pressure can now be controlled successfully through medications and lifestyle changes.

Diabetes: Type 2 diabetes is an independent risk factor for stroke, but when coupled with being overweight and having high blood pressure (which most patients with the disease have), the correlation is even stronger. Managing diabetes is critical to reducing risks of other serious conditions, including heart disease and stroke.

Other Risk Factors

Sex: Each year, more women than men have strokes. Certain factors such as pregnancy, gestational diabetes, oral contraceptive use (especially when combined with smoking), and hormone therapy can impact risk, so be sure to discuss your women’s health history with your physician.

Age: Individuals over the age of 55 are more likely to suffer a stroke than younger individuals. For this reason, minimizing risk factors wherever possible and maintaining regular preventive care appointments with physicians is essential in older adults.

Personal/Family History: If you’ve previously suffered a stroke or heart attack, or if someone in your immediate family has, you may face a higher risk of stroke. Individuals who have experienced cardiac issues should maintain the preventive care treatment plan recommended by their cardiologist.

While stroke isn’t always preventable, having even a basic understanding of these principles can help you maintain awareness and seek the right preventive care to help reduce your risk.

WordPress Image Lightbox
Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our team.

You have Successfully Subscribed!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!