Stem Cells Isolated from Stroke Patients Could Be Used in Stroke Treatment

Stem Cells Isolated from Stroke Patients Could Be Used in Stroke Treatment

Patients who suffer ischemic stroke have some treatment options, but many of them require immediate intervention and so are not useful if too much time has elapsed between the stroke and treatment. Therapies that employ stem cells are promising alternatives because stem cells can differentiate into brain cells and potentially help to replace tissue that has been damaged or destroyed.

A recent study published in Stem Cells and Development has shown for the first time that a specific type of stem cell – called ischemia-induced multipotent stem cells – may be able to help with such repair of brain tissue in patients who have suffered a stroke. Specifically, the research team demonstrated the technical ability to isolate the ischemia-induced multipotent stem cells from the brains of elderly stroke patients.

The scientists then used protein binding techniques to determine where in the brain these stem cells came from. They found that the cells came from areas of the brain where brain cells had been damaged or killed from the stroke. These cells were located near blood vessels and expressed certain biological markers that enabled the researchers to confirm that they qualified as stem cells. Specifically, these cells had proliferative qualities that suggested that they could potentially be used to re-populate damaged areas of the brain. The cells also showed the ability to differentiate into different types of cells, a key characteristic of stem cells used for therapeutic purposes.

This study represents a significant step in overcoming the technical challenges associated with isolating and classifying ischemia-induced multipotent stem cells. The next step for researchers will be to test the potential of these cells in stroke treatment. If researchers show that these stem cells can be used to successfully repair damaged areas of the brain – and more importantly, restore functions that were disrupted by the stroke – then physicians and scientists may be able to work together to translate these findings into therapies that are regularly used in stroke.

Reference

Tatebayashi et al. 2017. Identification of multipotent stem cells in human brain tissue following stroke. Stem Cells and Development, 26(11), 787-797.

Stem Cells Reverse Paralysis Caused by Spinal Cord Injury

Stem Cells Reverse Paralysis Caused by Spinal Cord Injury

Spinal cord injury can be one of the most devastating injuries. Long neurons that extend from the brain down the spinal cord are severed and scarred. In most cases, this damage can never be repaired. If patients survive an injury to the spinal cord, they can be permanently paralyzed. Researchers have attempted to use high-dose steroids and surgery to preserve the spinal cord, but these approaches are either controversial or largely ineffective.

Ideally, one would create an environment in which nerve cells in the spinal cord could regrow and take up their old tasks of sensation and movement. One of the most promising approaches to do just this is stem cell transplantation.

To test this concept, researchers used stem cells derived from human placenta-derived mesenchymal stem cell tissue (not embryonic stem cells) to form neural stem cells in the laboratory. These neural stem cells have the ability to become neuron-like cells, similar to those found in the spinal cord. The researchers then used these stem cells to treat rats that had experimental spinal cord injury. The results were impressive.

Rats treated with neural stem cells regained the partial ability to use their hindlimbs within one week after treatment. By three weeks after treatment, injured rats had regained substantial use of their hindlimbs. The researchers confirmed that this improvement was due to neuron growth by using various specialized tests (e.g. electrophysiology, histopathology). Rats that did not receive stem cells did not regain substantial use of their hindlimbs at any point in the study.

This work is particularly exciting because it shows that stem cells can restore movement to animals who were paralyzed after spinal cord injury. Moreover, the researchers used human stem cells derived from placenta, which suggests that this effect could be useful in human spinal cord injury patients (perhaps even more so than in rats). While additional work is needed, these results offer hope to those who may one day develop severe spinal cord injury.

Reference:

Zhi et al. (2014). Transplantation of placenta-derived mesenchymal stem cell-induced neural stem cells to treat spinal cord injury. Neural Regen Research, 9(24): 2197–2204.

How Altering pH Can Improve Stem Cell Applications for Skin Conditions

How Altering pH Can Improve Stem Cell Applications for Skin Conditions

Researchers have observed that the pH inside of certain stem cells affects their ability to proliferate and differentiate. These cells include mesenchymal stem cells and pluripotent stem cells, all of which have important applications in regenerative medicine. It is therefore important that pH be optimized to ensure that these stem cells can proliferate and differentiate so that they can be as useful as possible when utilized for therapeutic purposes.

A recent review, published in Current Problems in Dermatology, explored the importance of pH to stem cell function as well as the factors that influence pH. According to the authors, a protein known as the sodium hydrogen exchanger regulates intracellular pH and impacts both the proliferation and differentiation of different types of stem cells. When pH is changed, either within the cell or outside the cell – where the cell is exposed to the change in pH – stem cell functions includingmaintenance, self-renewal, and pluripotency are altered.

The effect of pH in stem cells is highly relevant for skin conditions and therefore for the practice of dermatology. According to the reviewers, research on how the sodium hydrogen exchanger and pH levels affect skin stem cells (also known as epidermal stem cells) and their behavior could enable the discovery of new interventions to improve the use of stem cells in skin therapies. This research would be particularly relevant for skin conditions like melanoma, psoriasis, and wound healing because the movement and proliferation of stem cells are keyissues in these conditions.

Reference: Charruyer, A. & Ghadially, R. (2018). Influence of pH on skin stem cells and their differentiation. Current Problems in Dermatology, 54, 71-78.

Parkinson’s Disease May Go Beyond Just Dopamine

Parkinson’s Disease May Go Beyond Just Dopamine

Parkinson’s disease is a progressive neurodegenerative disorder that causes tremor,rigidity, changes in facial expression, and several other symptoms. Whilesufferers usually retain their full cognitive abilities and memory, they tendto be impacted in mood and some mental health conditions that emerge as part ofthe condition process.

Parkinson’s disease is caused by loss of brain cells in a specific region of the brain called the substantia nigra. The neurons in this area of the brain contain dopamine, and as those nerve cells die, the levels of dopamine in the brain decrease. Consequently, patients with Parkinson’s disease often take medications that improve or accentuate dopamine signaling in the brain. These drugs can be effective for a certain period of time, but eventually, the condition will overcome the ability of these drugs to improve dopamine signaling. There is no cure for Parkinson’s disease, but researchers hope stem cells may be the answer.

Since dopamine drugs have worked reasonably well to control the symptoms of Parkinson’s disease, researchers assumed that replacing dopamine cells in the brain would help treat Parkinson’s disease. In a way, it did. When people with Parkinson’s disease received transplants of stem cells intended to produce dopamine, some of them experienced dramatic improvements in motor function. However, patients still had several other symptoms of Parkinson’s disease such as fatigue, bowel problems, sexual problems, and mood disorders. Neuroscience researchers realized Parkinson’s is not just about a loss of dopamine. It turns out, that while stem cells can help restore dopamine in people with Parkinson’s disease, they also coulduse help with serotoninneuron regenerating. 

As a result of this groundbreaking work, researchers are now planning and implementing experiments in which Parkinson’s disease patients will receive stem cell transplants containing both dopamine cells and seroton in cells. If effective, we will be one step closer to a new and powerful treatment for Parkinson’s disease.

Reference: https://blogs.scientificamerican.com/scicurious-brain/parkinsons-is-much-more-than-dopamine/?WT.mc_id=send-to-friend

Are There Benefits to Fasting Before Stem Cell Therapy?

Are There Benefits to Fasting Before Stem Cell Therapy?

Stem cell therapy is used for a broad range of applications, including the treatment of injuries and chronic conditions. Before undergoing this form of therapy, many patients are naturally inclined to explore any possibilities which could enhance the effectiveness of treatment. One option which is sometimes posed to patients is voluntary fasting – but is there really any benefit to fasting prior to stem cell treatment?

What the Research Says

In May of 2018, MIT biologists announced that they’d made a groundbreaking discovery: according to their research, it appeared that fasting could boost stem cells’ regenerative capacity. In an animal study, fasting spurred cells to break down fatty acids instead of glucose, which stimulates stem cells to become more regenerative.

Yet, the evidence only showed the metabolic switch taking place in the intestinal stem cells. After mice fasted for 24 hours, the researchers removed intestinal stem cells and grew them, finding that the fasting doubled the cells’ regenerative capacity.

Unfortunately, while this finding could hold value for patients recovering from gastrointestinal infections or other conditions affecting the intestine, as of yet, there is no concrete evidence which suggests it could benefit patients receiving stem cell therapy for other conditions. For instance, someone who is undergoing stem cell therapy to treat a musculoskeletal injury may likely yield no benefit from fasting, as the enhanced regenerative effects have only been observed in intestinal cells.

Further Studies Are Needed

Aside from the study’s limited scope, the research leader himself also indicated that the findings are still too narrow for drawing concrete conclusions. When interviewed for a publication in Medium, senior author of the study and assistant professor of biology, Omer Yilmaz, said that while stem cells do indeed use fat for energy to improve function, “the next step is to work to understand why that is.” He also added that “with these types of interventions, there’s never one simple answer.”

For now, there appears to be too much uncertainty to recommend fasting prior to stem cell therapy. Because these findings have not been observed in any humans, and those that have been observed were concentrated to intestinal cells, anyone who is receiving stem cell therapy can consider that eating beforehand is possibly unlikely to play any role in altering the results of their treatment.

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our team.

You have Successfully Subscribed!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!