Regenerative Medicine as A Therapy for Osteoporosis

Regenerative Medicine as A Therapy for Osteoporosis

Osteoporosis is a common bone disease that occurs as a result of the body’s inability to create new bone as fast as the body is losing bone. Characterized by progressively weakened bones and decreased bone density over time, osteoporosis often results in fractures of the wrist, hip, or spine. 

Currently, it is estimated that 10 million Americans have osteoporosis and an additional 44 million have low bone density considered significant enough to increase the risk of developing osteoporosis. Recent studies indicate that roughly 50% of women and 25% of men over the age of 50 will break a bone as a result of osteoporosis[1].

While traditional methods of managing osteoporosis include medication, regular participation in weight-bearing exercises, and eating a healthy diet, the condition cannot be cured through these current approaches. Recently, regenerative medicine, also known as stem cell therapy, has drawn attention as a potential new approach to regenerate bone tissue and as a way to treat osteoporosis.

Specific stem cells, known as mesenchymal stem cells (MSCs), are widely considered to be the most promising of all stem cells for regenerative applications – primarily because of their anti-inflammatory, immune-privileged potential and less ethical concerns than other forms of stem cells. 

In this review, Arjmand et al. consider all the currently known effects of stem cell-based therapies, including MSC-based therapy, in the treatment of osteoporosis. Several studies have confirmed the relationship between osteoporosis and a clear reduction in endogenous MSCs’ ability to proliferate, differentiate, and ultimately form new bone. Considering this, MSCs have been the most common type of stem cell investigated for the treatment of osteoporosis in both animal models and humans.

The authors point out several advantages of using MSCs in clinical models, including their accessibility and ease of harvesting, immunosuppressive outcomes, and ability to differentiate. Arjmand et al also highlight evidence that indicates MSCs to be effective in this application most likely as a result of their paracrine effects and their supporting regenerative microenvironment ability and not solely a result of their ability to differentiate. Considering these observed paracrine effects, the authors believe MSC transplantation could open a host of new opportunities for the treatment of osteoporosis.

This review concludes by calling for further studies into stem cell therapy as a potential treatment for osteoporosis specifically to understand the outcome and biodistribution of MSCs after transplantation and to further identify important bone loss signaling pathways and genes specific to each individual.

Source:  “Prospect of Stem Cell Therapy and Regenerative Medicine in … – NCBI.” 3 Jul. 2020, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7347755/.


[1] “Learn What Osteoporosis Is and What It’s Caused by.” https://www.bonehealthandosteoporosis.org/patients/what-is-osteoporosis/. Accessed 1 Feb. 2023.

What Stretches Help Relieve Back Pain?

What Stretches Help Relieve Back Pain?

Stretching the back muscles is a beneficial way to reduce back pain and tension, improve your range of motion, and strengthen the lower back muscles.  

When stretching your back muscles, it’s critical to be gentle so that you carefully and safely build up strength and release tension. 

For back pain relief, there are a few different stretches you can try.

Child’s Pose

The child’s pose is a restorative pose in yoga designed to stretch the muscles of the lower back, buttocks, and thighs while releasing tension along the neck, shoulders, and spine. 

To get into the child’s pose: 

  1. Find a tabletop position with your hands and knees on the ground 
  2. Sink your hips back until they rest at your heels
  3. Slowly fold forward as you walk your hands out in front of you, eventually resting your stomach on your thighs
  4. Extend your arms out as you breathe deeply to release any lingering tension

You can hold this pose for one minute or as long as it feels good. 

Knee-to-Chest Stretch

This stretch releases tension from your lower back while relaxing the muscles of your hips, glutes, and thighs. 

For the knee-to-chest stretch:

  1. Lie on your back, planting your feet on the floor
  2. Pull your right knee to your chest while extending your left leg to the floor
  3. Avoid lifting your hips as you hug your knee into your chest, wrapping your hands behind your thigh or around your shinbone

Breathe deeply for up to a minute before repeating the stretch with the left leg. 

Sphinx Stretch

Stretching your back like a sphinx allows you to engage in a gentle backbend that strengthens and lengthens your spine, chest, and core.

To find the sphinx stretch:

  1. Start lying on the floor, stomach down
  2. Plant your hands ahead of your shoulders as you engage your glutes and core, slowly lifting your chest from the floor as you lengthen your arms
  3. If this stretch feels too intense, lower your forearms to the ground with your shoulders stacked over your elbows
  4. Hold for 30 seconds to a minute before releasing back to the ground

Carefully stretching and strengthening your lower back can offer long-term pain relief and an immediate release of tension. As you perform these exercises, you should be able to breathe comfortably and smoothly. By using your breath as a gauge, you can ensure you don’t overdo it. 

Regenerative Medicine for Lower Back Pain

Regenerative medicine is a rapidly evolving field that aims to develop new therapies to treat a wide range of medical conditions, including lower back pain. There are several potential regenerative medicine treatments that are being investigated for lower back pain, including:

Stem cell therapy: Stem cells are cells that have the ability to differentiate into many different types of cells in the body. Stem cell therapy involves injecting stem cells into the affected area to promote the growth of new, healthy tissue.

Platelet-rich plasma (PRP) therapy: PRP therapy involves extracting a patient’s own blood, processing it to concentrate the platelets, and then injecting the concentrated platelets into the affected area to promote healing and tissue regeneration.

These are options available for patients who may want to explore an alternative option either in place of or in conjunction with traditional therapies available. Choosing a facility that offers these options should have board-certified providers performing the therapies and a positive and reputable background. Talk to your healthcare provider to determine which may be best for your care and wellness.

Regenerative Medicine for Osteoporosis

Regenerative Medicine for Osteoporosis

Developing weak and brittle bones from osteoporosis can lead to mild bone stress — like that from bending over — causing a fracture. Most bone fractures from osteoporosis occur in the wrist, hip, or spine. While there is no cure for osteoporosis, there are treatments and medications that can help strengthen and protect your bones. Here we will discuss the benefits of Regenerative Medicine for Osteoporosis.

What Causes Osteoporosis?

Bones are living tissue. Your body constantly breaks down old bone cells and replaces them with new cells. Young bodies form new bone faster than old bone breaks down, increasing bone mass. That process slows in your early 20s, and bone mass typically peaks by the age of 30. 

After your bone mass peaks, the formation process slows, and you begin losing bone faster than you create it, causing a loss of bone mass. 

Many factors contribute to developing osteoporosis. Your bone mass development is partially inherited, but it’s also affected by hormone levels, diet, exercise, medical conditions, and lifestyle choices.

How Does Regenerative Medicine Work?

Regenerative medicine, also known as stem cell therapy, involves stem cells that are often called the building blocks of all cells. They contain unique healing capabilities, as they’re the only cells in the body that can divide to create two more stem cells or differentiate to form two new specialized cells. 

Stem cells lie dormant in tissue like bone marrow or adipose tissue (fat) until they’re needed to restore damaged or dead cells. Stem cell therapy extracts those dormant stem cells, then injects them into damaged areas to foster healing.

How Can Stem Cells Treat Osteoporosis?

From the beginning, researchers sought out mesenchymal stem cells (MSCs) to help manage osteoporosis. They believed that MSCs would increase bone mass by producing new bone cells faster than they age, similar to the process that happens in your youth. 

They were pleased to find that MSCs have even more capabilities in treating osteoporosis than expected, as they secrete bioactive molecules and growth factors fostering bone tissue repair and remodeling.  

Combining MSCs’ growth factor secretion and differentiation capabilities allows them to repair and restore bone cells efficiently. As a result, stem cell therapy has the potential to help manage the effects of osteoporosis and potentially restore bone strength and mass. 

While research continues around specific protocols for using stem cells to manage osteoporosis, early studies show promise for this groundbreaking therapy. To learn more about regenerative Medicine for Osteoporosis contact a care coordinator today at Stemedix!

Mesenchymal Stem Cells and Osteoarthritis

Mesenchymal Stem Cells and Osteoarthritis

Osteoarthritis (OA) is the most common form of arthritis and affects an estimated 25% of adults in the United States. Characterized by pain, stiffness, and inflammation in the joints of the body, OA is most frequently observed in the knees, hands, hips, and spine.

OA is one of the leading causes of disability with an annual cost of medical care and lost earnings exceeding $300 billion. With over 250 million people affected by OA worldwide, the combination of aging, obesity, and increased incidents of oxidative stress is causing the condition to become increasingly prevalent.

To date, treatment and medical interventions – including exercise, physical therapy, lifestyle modifications, and prescription and over-the-counter medications – have been successful in managing symptoms, reducing pain, and maintaining joint mobility, but have not been able to promote the regeneration of degenerated tissue.

Stem cells, and specifically mesenchymal stem cells (MSCs), have been identified as a potential therapy option for OA. In this review, Zhu et al. summarize the pathogenesis and treatment of OA and review the current status of MSCs as a potential treatment option for the condition.

In reviewing the pathogenesis of OA, the authors highlighted the fact that OA is a dynamic and progressive degenerative disease that is primarily caused by the imbalance between restoration and destruction of the joints; the disease is also significantly influenced by environmental, inflammatory, and metabolic aspects.

The authors highlight that the primary goals of current OA treatment methods are to reduce pain, slow progression, and preserve and improve joint mobility and function.

As researchers continue to search for therapies that encourage the regeneration of damaged articular cartilage and the alleviation of inflammation, they’ve turned their attention to a number of stem cell-based therapies, such as autologous chondrocyte implantation (ACI).  While ACI has received FDA approval, unexpected dedifferentiation, and joint invasiveness during harvest limit the availability and usefulness of this application.  

Fortunately, MSCs have not been found to demonstrate limitations similar to those observed in ACI and are considered novel therapeutic agents for the treatment of OA. Prized primarily for their ability to stimulate cartilage formation and for their vascularization, anti-inflammation, and immunoregulation, MSCs are sourced from different types of stem cells, including bone marrow  (BM-MSCs), adipose tissue (AD-MSCs), and umbilical cord (UC-MSCs). Zhu et al. summarize the characteristics, advantages, and disadvantages of each of these MSC sources in this review.

The authors point out that several clinical trials have proven both the safety and potential efficacy of BM-MSCs, AD-MSCs, and UC-MSCs in the treatment of OA.  However, the authors also point out that several of these trials were conducted with limited samples, without rigorous controls, and with relatively short-term follow-up. Considering this, Zhu et al. call for additional clinical trials using larger samples, more rigorous controls, and additional long-term follow-up. In addition, the authors also call for additional considerations to further enhance the efficacy in clinical trials, including cell density, time and location for MSC transplantation, and pretreatment of MSCs by inflammatory cytokines.

The authors conclude that while stem cell-based therapy, and specifically MSCs, demonstrate great potential for the regeneration of new cartilage and strong immunoregulatory capacity, the identified limitations and risks of MSC-based therapy should be realized and treated carefully.  

Despite the identified risks and limitations, MSC-based therapy for the treatment of OA might achieve better efficacy in regenerative medicine, especially when administered in combination with other treatment options.

Source: “Mesenchymal stem cells in osteoarthritis therapy: a review – NCBI.” 15 Feb. 2021, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7868850/

Regenerative Medicine For Alzheimer’s Disease

Regenerative Medicine For Alzheimer’s Disease

Alzheimer’s disease (AD) is the most common cause of dementia, accounting for an estimated 50%-70% of dementia cases worldwide.  Characterized by memory loss and cognitive impairment, AD is progressive, debilitating, and fatal.  In addition, it’s estimated that new cases of AD around the globe are occurring at a staggering rate of 20 per minute with an established effective treatment yet to be discovered.

To date, research has demonstrated an advanced understanding of AD’s development and devastating – and eventually fatal – outcomes, but has only been able to identify drugs that intervene too late in the progression of the condition.

Considering that stem cells have a detailed and documented record of their ability of self-renewal, proliferation, differentiation, and transformation into different types of central nervous system neurons and glial cells and that they have been successful in AD animal models, it is believed that stem cells have the potential to treat patients with AD.  

In reviewing the progress of stem cells as a potential therapeutic treatment for AD, Liu et al. call for new treatments, including the removal of toxic deposits and the ability to replace lost neurons to be developed and as a way to stimulate neural precursors, prevent nerve death, and enhance structural neural plasticity.  The authors also review the pathophysiology of AD and the application prospect of related stem cells based on specific cell types.

Liu et al. point out that, although AD models using animal research have been demonstrated to be successful, animal research is difficult to translate into human trials, and, to date, none have been able to replicate the complex environment observed in the human brain.  Considering this, the authors conclude that it is challenging, at best, to characterize the beneficial effects of stem cells in AD based solely on previously conducted animal models. 

As a result of this review, the authors also conclude that while stem cells used in AD and animal models have achieved certain results, there are still several factors that require consideration.  Among these factors is the fact that this type of stem cell therapy requires neurosurgical procedure and immunosuppression which contributes to ongoing concerns related to controlling the proliferation and differentiation of stem cells, the targeting of molecular markers, and the development of cell delivery systems.  

The authors acknowledge that progression in the study of stem cells in AD applications should be made more efficient because of recent technological advances in stem cells, specifically using hydrogels, nano-technology, and light therapies to produce more efficient delivery of treatment.

While these advances should help, Liu et al. also point out that a number of obstacles, including uncertainty about the amyloid hypothesis, differing objectives related to preventing progression vs symptomatic treatment, and demonstrating the relationship between stem cell treatment and complete AD cure, still need to be addressed.

Considering the findings of this review, the authors conclude that stem cell therapy for AD carries enormous promise, but the successful application will most likely be dependent upon consistent early diagnosis of the condition in order to prevent further brain cell deterioration and will likely be combined with an administration of existing medication as a way to most effectively treat and/or prevent AD.

Source: Mesenchymal stem cell-based therapy for autoimmune diseases.” https://pubmed.ncbi.nlm.nih.gov/30623280/.

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our team.

You have Successfully Subscribed!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!