Allogeneic Bone Marrow-Derived Mesenchymal Stem Cell Safety in Idiopathic Parkinson’s Disease

Allogeneic Bone Marrow-Derived Mesenchymal Stem Cell Safety in Idiopathic Parkinson’s Disease

Research has shown neuroinflammation to have a significant role in the pathogenesis of Parkinson’s disease (PD). Much of this same research has also demonstrated mesenchymal stem cells (MSCs), and specifically, allogeneic bone marrow-derived MSCs, can be effectively used as an immunomodulatory therapy for the potential treatment of PD.

The goal of Schiess et al.’s study was to evaluate the safety and tolerability of first-of-its-kind intravenous allogeneic bone marrow-derived MSCs (allo-hMSCs) in patients with PD.

Neurological disorders continue to be the leading cause of disability-adjusted life years lost worldwide (a statistical measure of years of healthy life lost as a result of death or disability relating to the constitution). While the numbers of those diagnosed with neurological disorders, including stroke, multiple sclerosis, motor neuron disease, and dementia continue to increase at a rapid rate, none are growing as fast as PD.

Considering the rapid progression of progressively intensifying symptoms associated with PD and the relatively poor progress in the discovery of therapies to prevent, or even slow, progression of PD, the authors identified the identification of effective and safe disease-modifying therapies for PD to be a priority.

As part of this study, Schiess et al. studied the peripheral immune system in PD neurodegeneration through the evaluation of LPS rat models, glial cells, and cerebrospinal fluid gathered from patients. As a result of these investigations, the authors determined that an adaptive immune response does contribute to progression supporting the rationale for using MSCs as a potential therapy for PD.

To evaluate the effectiveness of this therapy, Scheiss et al. developed and conducted a single-center, open-label, ascending-dose-escalation phase 1 clinical study involving 20 patients with mild to moderate PD. Participants were assigned to single intravenous doses of 1 of 4 doses and evaluated at weeks 3, 12, 24, and 52 post-infusion.

In addition to evaluating the safety and tolerability of an intravenous infusion of bone marrow-derived allow-hMSCs, the research team also evaluated participants for relevant biomarkers for the mechanism of action and clinical assessment of PD progression.

The authors point out that while there were no serious adverse reactions related to the infusion and no responses to donor-specific human leukocyte antigens, the most commonly reported side effect was dyskinesias and hypertension. Further studies will need to monitor the emergence or exacerbation of post-infusion dyskinesias and hypertension to better understand their occurrence as part of this study.

In conclusion, Sheiss et al. found that a single infusion of allogeneic MSCs ranging from 1 to 10×106 intravenous allo-hMSCs/kg was safe, well tolerated, and not immunogenic in patients with mild-to-moderate PD. The authors also found that peripheral inflammation markers appeared to be reduced at 52 weeks after receiving the highest dose, leading to the conclusion that the highest dose had the most significant effect at the 52-week interval.  

Based on these findings, the authors recommend moving forward with a phase 2 randomized, placebo-controlled efficacy trial using allo-hMSCs in a larger population of well-defined Parkinson’s disease patients.


Source: “Allogeneic Bone Marrow-Derived Mesenchymal Stem Cell Safety in ….” 27 Mar. 2021, https://movementdisorders.onlinelibrary.wiley.com/doi/full/10.1002/mds.28582.

The Safety and Efficacy of Stem Cell Therapy For ALS

The Safety and Efficacy of Stem Cell Therapy For ALS

As science continues to uncover the benefits of stem cell therapy, many trials and studies are bringing their focus to conditions with limited treatment options. The neurodegenerative condition amyotrophic lateral sclerosis (ALS) is one of the conditions that greatly needs new treatment methods to slow its progression. Fortunately, recent clinical trials offer promising results. Here we will discuss Stem cell therapy for ALS.

What Is ALS?

ALS affects the nerve cells present in the brain and spinal cord. In ALS patients, the motor neurons that carry messages from the brain to the spinal cord and then to the body’s muscles progressively die off. As they die, the brain can no longer communicate with the muscles, so patients lose muscle action. 

The loss of muscle control may begin with walking and standing, but patients can lose the ability to move, speak, eat, and breathe over time. 

How Can Stem Cell Therapy Help ALS Patients?

Stem cells are the building blocks of cells. When prompted to divide, stem cells can either form more stem cells or become specialized cells, such as brain cells or nerve cells. Those new, specialized cells have the potential to repair and replace damaged cells. 

Stem cell therapy is an inspiring option in treating ALS since researchers believe the treatment could support new cell growth and help manage the body’s immune system response. Additionally, stem cells offer the potential to regenerate the damaged motor neurons that are characteristic of the disease. 

Clinical Trial Results

In an analysis of six clinical trials that examined the benefits of stem cell treatments in slowing the progression of ALS, all six trials showed stem cell therapy slowed the advancement of the disease. However, in two studies, the results were not statistically significant. 

All of the studies that followed patients for six months after their stem cell treatments saw significant differences in the results of patients’ ALSFRS-R reports. Patients within the treatment groups experienced a notable slowing in the disease’s progression. In examining the methodologies of the studies analyzed, there are techniques and types of stem cells that show improved results. Notably, the most effective delivery of stem cells to slow ALS in patients is through injections into the fluid-filled space surrounding the spinal cord. In addition, studies using mesenchymal stem cells (MSCs) also saw more significant results than other stem cell therapies. To learn more contact a care coordinator today at Stemedix!

Summer Is Approaching — How to Cope and Stay Safe in Extreme Heat

Summer Is Approaching — How to Cope and Stay Safe in Extreme Heat

The rising summer temperatures may offer more opportunities to enjoy the outdoors and come with an increased risk of heatstroke. Planning for hot days allows you to enjoy the longer, warmer days without suffering when the temperatures rise. 

Who Is at Risk of Medical Concerns in the Heat?

Anyone can become ill from too much time in extreme temperatures. However, some people are more likely to suffer from medical concerns stemming from too much time in the heat. These people include:

  • Those with chronic medical conditions
  • Those with mental illness
  • People on certain medications
  • Those with limited mobility
  • People over the age of 65
  • Babies and young children
  • Overweight or obese people
  • Those who work or exercise outdoors

Additionally, people who are more accustomed to cooler climates may be more affected by hotter temperatures.

How to Stay Safe in the Heat

When temperatures rise, people are more likely to become dehydrated, which can cause cramps, exhaustion, or heat stroke. Some tips for staying healthy in the heat include:

  • Drink plenty of water
  • Eat foods high in water
  • Wear sunscreen
  • Stay in the shade
  • Avoid being out in the hottest part of the day
  • Wear light-colored, loose-fitting clothing
  • Avoid strenuous activities
  • Use wet towels or cool (not cold) showers to keep from overheating

It’s essential to check on friends and family in times of extreme heat and have them check on you.

Prepare for High Temperatures

Right now is the time to ensure your safety in extreme temperatures. Prevent any issues when temperatures rise by taking the time to ensure your safety and comfort in cases of extreme heat. Some actions to take include:

  • Knowing the signs of heat-related illnesses
  • Identifying cool areas in your community where you can go 
  • Purchase window deflectors to reflect heat outside
  • Install window air conditioners and insulate around them

If you have a whole-house air conditioner, check your unit to ensure it doesn’t need any maintenance or repairs before summer temperatures rise.

If You Experience Heat-Related Symptoms

If you experience heat cramps or heat exhaustion signs, go to a cooler location and remove excess clothing. Sip sports drinks or water, and call a healthcare provider if symptoms worsen or persist for more than an hour.

For more health awareness blogs, please visit www.stemedix.com/blog.

Mesenchymal Stem Cells in Multiple Sclerosis: Recent Evidence from Preclinical to Clinical Studies

Mesenchymal Stem Cells in Multiple Sclerosis: Recent Evidence from Preclinical to Clinical Studies

Multiple sclerosis (MS) is a chronic inflammatory disease that attacks myelin, the protective sheath that covers nerves and causes progressive and serious communication issues between the brain, central nervous system, and the rest of the body[1].

Currently, it’s estimated that over 2.3 million people worldwide, and over one million people in the US have a diagnosis of MS[2].

While there have been significant improvements in treatments designed to stabilize, delay, and even improve symptoms of MS, new and more effective treatments are needed to improve the long-term outcome associated with the condition. 

One area currently being investigated as a potential therapeutic option for treating MS is the use of regenerative medicine, also known as stem cell therapy, and specifically treatment using mesenchymal stem cells (MSCs). 

In this review of evidence from preclinical and clinical studies, Gugliandolo et al. examine studies involving the use of MSCs or their derivatives in vivo models of MS and patients affected by MS. The authors also examine and discuss the feasibility of autologous MSCs therapy for MS patients.

Specifically, and when assessed in terms of effectiveness when treating MS, the therapeutic potential of MSCs was associated with their differentiation capacity and paracrine effects, their ability to differentiate toward oligodendrocytes and express oligodendrocyte progenitor cell (OPC) markers, and their capacity for homing (moving towards the damaged area following chemical gradients).

As part of this review, the authors also examined the effectiveness of various sources of MSC in MS models, these sources included bone marrow MSCs (BM-MSCs), adipose tissue-derived MSCs (AD-MSCs), periodontal ligament stem cells (PDLSCs), skin-derived MSCs (S-MSCs), Wharton’s jelly-derived MSCs (WJ-MSCs), human umbilical cord MSCs (UCMSC), human amnion mesenchymal cells (AMCs), placental derived MSCs (PMSCs), and decidua derived MSCs (DMSCs).  According to the research reviewed by Gugliandolo et al., all MSCs, regardless of where they were harvested from, demonstrated beneficial effects in the therapeutic treatment of MS.

Specifically, the results demonstrated that MSCs were able to produce some form of protective effects in reducing inflammatory cell infiltration, disease score, demyelination, and blood-brain barrier disruption.

A review of 29 phase 1 or 2 clinical trials registered on clinicaltrials.gov demonstrated that MSCs, regardless of the type and method of administration, demonstrated to be safe and absent of severe adverse effects with the majority demonstrating measurable improvements when used in MS patients.

While clinical trials demonstrated the safety of administration of MSC in MS patients, the authors were particularly interested in learning if autologous MSC transplantation presented some advantages over heterologous administration. 

The authors of this review found that samples obtained from healthy controls and MS patients showed similar features, indicating the possibility of autologous stem cell therapy in MS patients. However, other studies found that MSCs obtained from MS patients exhibited a different transcriptional pattern and fewer immunosuppressive functions compared to healthy donor MSCs.

Gugliandolo et al. point out that limits to these experimental studies include the use of animals of a single gender, given that sex-dependent differences exist and the use of different MS models, different number of transplanted cells, different MSCs sources, and routes of administration.  These limitations make it difficult to define the optimal treatment in terms of cell type, dose, and administration conditions.

The authors conclude that clinical trials demonstrate the safety and feasibility of MSCs treatment, and also some improvements, but more data on larger cohorts are required to establish their efficacy. Considering the controversial results pertaining to the features of MSCs derived from MS patients, the authors also call for additional research in order to conclusively determine the safety and efficacy of autologous MSCs therapy in MS patients.

Source: “Mesenchymal Stem Cells in Multiple Sclerosis – NCBI.” 17 Nov. 2020, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7698327/.


[1] “Multiple sclerosis – Symptoms and causes – Mayo Clinic.” 7 Jan. 2022, https://www.mayoclinic.org/diseases-conditions/multiple-sclerosis/symptoms-causes/syc-20350269.

[2] “Understanding MS | National Multiple Sclerosis Society.” https://www.nationalmssociety.org/What-is-MS/MS-FAQ-s.

Mesenchymal Stem Cell Therapy for Parkinson’s Disease

Mesenchymal Stem Cell Therapy for Parkinson’s Disease

Regenerative medicine, also known as stem cell therapy, is emerging as a viable treatment for Parkinson’s disease as clinical trials move through the FDA approval process. Patients in clinical trials see positive results from mesenchymal stem cell therapy for Parkinson’s Disease. 

What Is Parkinson’s Disease? 

Parkinson’s disease is a progressive, neurodegenerative condition. It occurs when dopamine-producing brain cells stop working or die. Dopamine’s role in the body is to send messages between nerve cells or from nerve cells to muscle cells, affecting the body’s physical and mental functions. 

Symptoms of Parkinson’s start gradually, and the disease worsens over time. Early symptoms include tremors in the hands, rigidity, and slowness of movement. Patients with Parkinson’s also experience difficulty with balance, and eventually, with speech, writing, and automatic muscle movement such as blinking. 

While there’s currently no cure for Parkinson’s, there are medications that patients can take to manage symptoms. Some symptoms are also relieved from surgery to regulate specific brain areas. 

Patients with Parkinson’s disease experience a progressive decline in their ability to function, with treatments only offering some relief. The emergence of mesenchymal stem cell therapy as an option to reverse the damage and halt the progression of Parkinson’s disease is an exciting development. 

What Are Mesenchymal Stem Cells?

Stem cells are considered to be the building blocks of cells. All specialized cells in the body come from stem cells. When stem cells divide, they either produce more stem cells, called daughter cells, or differentiate into specialized cells, such as bone, blood, or brain cells. 

Mesenchymal stem cells (MSCs) are adult stem cells commonly found in bone marrow. They also exist in adipose (fat), umbilical cord tissue, amniotic fluid, and other locations. MSCs remain dormant in the bone marrow until they’re needed to facilitate healing in the body. 

MSCs differentiate into: 

  • Bone cells
  • Muscle cells
  • Skin cells
  • Cartilage
  • Neural cells
  • Corneal cells

MSCs are present throughout your life, but they age as the body ages, making them less effective and concentrated over time.

How Can Mesenchymal Stem Cells Benefit Those with Parkinson’s Disease?

In recent clinical trials using mesenchymal stem cells on Parkinson’s patients, the cells significantly improved patients’ symptoms, including facial expressions, gait, and rigidity or “freezing” episodes. Some of the patients in this study substantially reduced their dosages of medicines used to control Parkinson’s symptoms. 

In a 2005 study, researchers determined that stem cells may be capable of differentiating into dopamine neurons, which are damaged or destroyed with Parkinson’s. 

While the true potential of mesenchymal stem cell benefits in Parkinson’s patients is still being investigated, there is reason to believe that patients with the neurodegenerative condition could experience a significant improvement in their quality of life with  stem cell therapy. If you are interested in learning more about Mesenchymal Stem Cell Therapy for Parkinson’s Disease, contact us today at Stemedix!

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our team.

You have Successfully Subscribed!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!