Mesenchymal Stem Cells Exert Therapeutic Effects in Duchenne Muscular Dystrophy

Mesenchymal Stem Cells Exert Therapeutic Effects in Duchenne Muscular Dystrophy

Duchenne muscular dystrophy is a degenerative condition that is hereditary caused by mutations to a gene called dystrophin. The condition affects both skeletal and cardiac muscles, impairing physical mobility and leading to weakened heart and respiratory functioning. Current treatments for Duchenne muscular dystrophy aim to control the symptoms of the condition and enhance the quality of life, but there is no known cure.

Given the need for effective therapies in Duchenne muscular dystrophy and the success of stem cells in treating other degenerative conditions, research has begun to focus on how cell therapies may be able to help Duchenne muscular dystrophy patients. Mesenchymal stem cells have been considered as an approach to this form of therapy.

Much of the research to date has emphasized autologous sources of stem cells that come from the patient themselves – such as from bone marrow or adipose tissues. However, a recent study, published in Biomaterials, investigated the impact of allogeneic mesenchymal stem cells – which comes from someone other than the patient – on Duchenne muscular dystrophy. Specifically, the researchers looked at the therapeutic effects of placenta-derived mesenchymal stem cells.

The scientists found that using placenta-derived mesenchymal stem cells may be able to reduce the amount of scarring and thickening of the connective tissue of the cardiac muscles and diaphragm in Duchenne muscular dystrophy while also minimizing inflammation. These promising findings demonstrate the potential to use stem cells to reverse the pathology of Duchenne muscular dystrophy and not just to address the symptoms. Future research will help to determine if regenerative therapy could have a meaningful impact on the course of this condition.

 

Reference: Bier et al. 2018. Placenta-derived mesenchymal stromal cells and their exosomes exert therapeutic effects in Duchenne muscular dystrophy. Biomaterials, 174, 67-78.

Cannabinoids (CBD) Help Patients with Hard to Treat Muscle Spasticity From Multiple Sclerosis

Cannabinoids (CBD) Help Patients with Hard to Treat Muscle Spasticity From Multiple Sclerosis

Four out of five people with multiple sclerosis experience muscle spasticity. Muscle spasticity causes increased muscle tone, uncontrollable muscle contractions, and spasms. Like severe muscle cramps, muscle spasticity can be quite painful and is one of the most troubling symptoms of multiple sclerosis. Despite being so common and so troublesome, multiple sclerosis patients with muscle spasticity have few effective treatments options. In many cases, the muscle spasticity continues even after treatment with drugs such as baclofen or tizanidine. Not only are these drugs largely ineffective, in many cases they cause substantial side effects.

Marijuana has long been known to exert a muscle relaxing (anti-spasmodic) effect. As medical marijuana is becoming legal in more jurisdictions, researchers are now carefully studying the effects of the substances within marijuana. One important example is a study conducted by Spanish researchers. In 2010, Spanish drug authorities approved the use of an oral spray that contains a combination of delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), two active substances found in marijuana (Cannabis sativa). Spanish authorities approved the use of this drug for multiple sclerosis patients with moderate to severe muscle spasticity who did not benefit from other antispasmodic drugs.

Dr. Lorente Fernández and other Spanish researchers were interested in learning whether this combination of THC and CBD was able to help multiple sclerosis patients with severe muscle spasticity. The scientists found that the combination of substances found in medical marijuana was effective in 80% of patients they examined. What is striking about this finding is that every patient included in this study had failed to find relief from other medical treatments of spasticity. In other words, they had difficulty in treating muscle spasticity. When viewed in those terms, an 80% effectiveness rate is extremely impressive.

Some patients withdrew from treatment because they felt that THC/CBD did not help them within the first 30 days of starting treatment or some experienced dizziness or weakness.

Muscle spasticity is one of the most common, most troubling, and most difficult to treat symptoms of multiple sclerosis. While traditional medical treatments often fail, the substances in medical marijuana may offer hope. This study illustrates that 4 out of 5 multiple sclerosis patients with difficult to treat muscle spasticity achieved relief from a combination of THC and CBD, substances found in medical marijuana.

Visit our website for available hemp extract products. Click here

 

Reference: Lorente Fernández et al. (2014). Clinical experiences with cannabinoids in spasticity management in multiple sclerosis. Neurologia. 2014 Jun;29(5):257-60.

Stem Cells Show Promise for Helping Alzheimer’s Disease with Neurodegenerative Disease via Multiple Mechanisms

Stem Cells Show Promise for Helping Alzheimer’s Disease with Neurodegenerative Disease via Multiple Mechanisms

Alzheimer’s disease is the most common form of dementia, and though its prevalence is growing, there are currently no medical interventions that are able to reverse or slow the disease. Most current therapies address the symptoms of Alzheimer’s disease rather than the underlying cause of the disease.

Stem cells appear to offer a promising opportunity for treating Alzheimer’s disease and other neurodegenerative disorders, and a recent review published in Current Alzheimer Research has covered research into the ways stem cells can be applied to these disorders. Specifically, the authors of the review discuss the stem cell sources that may offer the potential to treat neurodegenerative diseases and the mechanisms by which these stem cells may confer benefits to this set of patients.

According to data collected so far, stem cells may be both safe and effective in treating neurodegenerative disorders like Alzheimer’s disease, but the mechanism by which they produce benefits for those with these disorders is not entirely clear. There are some data that show that the replacement of degenerated tissue with new proliferative stem cells accounts for stem cell benefits in models of neurodegenerative disorders, while other data show that stem cells can lead to advantageous enhancements in the expression of synaptic proteins.

Evidence from other studies, however, suggest that stem cells help with neurodegenerative disease through the release of neurotrophic factors that lead to paracrine benefits. Additional studies point to modulation of the immune system as the way that stem cells may help those with neurodegenerative disorders.

Future research will help to elucidate the specific mechanisms by which stem cells can provide effective therapy for people with neurodegenerative disorders. It may be the case that a variety of stem cell types used in multiple ways can be helpful for neurodegenerative disease therapy, and research will help to delineate the different ways stem cells can be used and inform the therapies that are developed.

 

Reference: Bali, P, et al. (2017). Potential for stem cells therapy in Alzheimer’s disease: Do neurotrophic factors play a critical role? Current Alzheimer Research, 14(2), 208-220.

Hyperbaric Oxygen Therapy for Alzheimer’s Disease

Hyperbaric Oxygen Therapy for Alzheimer’s Disease

Alzheimer’s disease causes patients to have difficulty recalling memories and performing tasks. Alzheimer’s disease is progressive, which means it gets worse over time. Once Alzheimer’s disease begins, patients either stay the same or get worse. Most people notice symptoms getting worse over a period of 10 years. However, some people with Alzheimer’s disease will get worse very rapidly, over the course of a few years.

Because Alzheimer’s disease is discussed frequently in popular media, many people know that part of the disease process is the accumulation of abnormal proteins in the brain, namely beta-amyloid plaques and tau neurofibrillary tangles. One less well-known effect of Alzheimer’s disease is that it interferes with blood flow in the brain. This decreased blood flow is so common, in fact, that doctors can detect low brain activity using positron emission tomography (PET), which can help make the diagnosis of Alzheimer’s disease.

Between 2002 and 2012, researchers tested 244 treatments for Alzheimer’s disease, and only one medication was approved by the FDA. After all this time, there is still no cure for Alzheimer’s disease. In fact, the drugs used to treat Alzheimer’s disease are mostly ineffective. At best, they slow the progression of the disease for several months to a few years.

This lack of success has prompted several research groups to focus on other treatments for Alzheimer’s disease. One experimental treatment for Alzheimer’s disease is hyperbaric oxygen therapy. In hyperbaric oxygen therapy, patients rest in a specialized chamber while they experience oxygen at a slightly higher pressure than they would in the outside world.

Researchers wanted to determine whether hyperbaric oxygen therapy could improve the symptoms of Alzheimer’s disease, but also whether they could see those brain changes using PET. To do this, Drs. Harch and Fogarty enrolled a woman with rapidly deteriorating Alzheimer’s disease in their clinical study. She was exhibiting the characteristic signs of Alzheimer’s disease and reduced brain activity and blood flow in her brain. They treated her with a series of hyperbaric oxygen therapy treatments (1.15 atmospheres, 40 minutes, 5 days per week over 66 days).

After 21 treatments, the woman had increased energy, her mood was better, she was better able to perform activities of daily living, and she was actually performing crossword puzzles. After 40 hyperbaric oxygen treatments, she had better memory and concentration, she was sleeping better, her appetite had improved, she was able to hold conversations and able to use a computer.

Interestingly, when the researchers performed follow-up PET study after hyperbaric oxygen therapy, blood flow and brain activity improved as much as 38% compared to the PET study before treatment.

Additional clinical studies with larger groups of Alzheimer’s disease patients are needed to determine how effective hyperbaric oxygen therapy is, what pressure to use, and how many treatments are needed, etc. Nonetheless, the impressive changes reported in this case study are promising, and should spark additional clinical research.

Contact a Stemedix Care Coordinator for more information on Regenerative Medince Therapy combined with Hyperbaric Oxygen Therapy (HBOT) for Alzheimer’s Disease.

Reference: Harch et al. (2019). Hyperbaric oxygen therapy for Alzheimer’s dementia with positron emission tomography imaging: a case report. Medical Gas Research. 2019 Jan 9;8(4):181-184.

Umbilical Cord Mesenchymal Stem Cells Promote Nerve Cell Protection and Blood Vessel Growth

Umbilical Cord Mesenchymal Stem Cells Promote Nerve Cell Protection and Blood Vessel Growth

Much of the initial excitement surrounding stem cells was that they have the potential to become other types of cells. Add cardiac stem cells to a heart damaged by a heart attack, for example, and perhaps those stem cells will become new heart cells and restore heart function. While this does occur—stem cells differentiated mature into adult cells—a fascinating and potentially more exciting use of stem cells is for what they secrete rather than what they become.

Over the past few years, researchers have become increasingly interested in the beneficial substances that stem cells secrete. Researchers refer to the collection of substances that stem cell secretes as its secretome. Stem cell researchers grow various kinds of stem cells in the laboratory and then measure the substances that the stem cells secrete to identify its secretome.

Dr. Hsieh and coauthors discovered that stem cells taken from human umbilical cord secrete an astounding number of helpful molecules. The scientists collected mesenchymal stem cells from Wharton’s jelly (which is a substance found in the human umbilical cord that is normally thrown away as medical waste). They then compared those mesenchymal stem cells with stem cells taken from bone marrow. The researchers found that the umbilical cord mesenchymal stem cells produced molecules that help protect nerve cells, helps nerve cells grow, and help blood vessels grow. The effects were much greater than from cells taken from bone marrow.

One interesting result from their scientific study was the effect of umbilical cord mesenchymal stem cells on injured nerve cells. The researchers deprived brain cells of sugar and oxygen to mimic what the cells would experience during a stroke. The substances secreted by stem cells protected the nerve cells during this harsh treatment. This effect was much stronger in the umbilical cord stem cells compared to the bone marrow stem cells.

Another interesting result from this research was that umbilical cord mesenchymal stem cells helped blood vessel cells organize and form new blood vessels (“tubes”). This could be very important for establishing blood flow to damaged tissue from burns, frostbite, heart attack, or stroke.

These results show that mesenchymal stem cells taken from umbilical cord tissue (Wharton’s jelly) have a unique secretome, which is more potent than similar cells taken from bone marrow. This research is particularly important for patients who have suffered an ischemic stroke or heart attack, as it may provide a clue for a way to treat these conditions in the future.

 

Reference: Hsieh et al. (2013). Mesenchymal Stem Cells from Human Umbilical Cord Express Preferentially Secreted Factors Related to Neuroprotection, Neurogenesis, and Angiogenesis. PLOS One.2013; 8(8): e72604.

Hyperbaric Oxygen for Parkinson’s Disease with Severe Depression and Anxiety

Hyperbaric Oxygen for Parkinson’s Disease with Severe Depression and Anxiety

Parkinson’s disease is widely known as a neurological condition that causes motor symptoms. Typically, patients with Parkinson’s disease have pill-rolling tremor, cogwheel rigidity, and a shuffling gait. However, about half of all patients with Parkinson’s disease also have psychiatric symptoms such as anxiety and depression. It can be challenging for patients and caregivers to deal with Parkinson’s disease, but if anxiety and depression are also present, it can make matters worse. When psychiatric symptoms occur, they can make Parkinson’s disease more difficult to treat, increase the burden on caregivers, and greatly reduce quality-of-life for patients.

One of the things that make psychiatric symptoms so difficult to treat in patients with Parkinson’s disease is that doctors have limited treatment options. The antidepressants that they would normally use to treat depression and anxiety can make motor symptoms of Parkinson’s disease worse. People with Parkinson’s disease often struggle with sleep disturbances, and typical antidepressants can make sleep problems worse, too. Not surprisingly, many patients with Parkinson’s disease suffer from depression and anxiety and never find adequate treatment.

Physicians recently reported their experience with a patient with Parkinson’s disease who they treated with hyperbaric oxygen. The man had struggled with Parkinson’s disease for 1.5 years and had slipped into a severe depression. He had lost interest in pleasurable activities, was only sleeping about 2 to 3 hours each night, unintentionally lost over 40 pounds, and was having thoughts of suicide. He also had significant anxiety issues that made his life very difficult. Regular drug and psychotherapy treatments for anxiety and depression did not work for this man, so physicians were left with few options.

The man with Parkinson’s disease, severe depression, and anxiety underwent 30 days of hyperbaric oxygen treatments. He inhaled pure oxygen in a hyperbaric chamber for 40 minutes per session at 2 atm of pressure. In as little as four days of hyperbaric oxygen treatment, the man was sleeping better and longer than he did before treatment. His mood has also improved.

After 30 days of hyperbaric oxygen treatments, the man was able to sleep for 8 to 10 hours a night. Not only did his psychiatric symptoms improve, but his Parkinson’s disease symptoms also improved. While he still had Parkinson’s disease symptoms after hyperbaric oxygen treatment, the symptoms had improved substantially.

When physicians followed up one month after treatment had ended, the patient was still sleeping through the night, his mood was good, and he did not need assistance with his activities of daily living.

It is important to remember that this is a case study, the results of a single patient. Nevertheless, the improvements in both Parkinson’s disease and severe symptoms of anxiety and depression are incredibly impressive. For this man, at least, hyperbaric oxygen therapy had a substantial positive effect in his life where other treatments had failed.

Patients can also combine Hyperbaric Oxygen Therapy with Regenerative Medicine. Regenerative Medicine is an alternative option to help manage the symptoms of Parkinson’s Disease. The stem cells have the potential to replicate and repair numerous cells of the body, including those damaged by Parkinson’s. These advancements in the treatment of Parkinson’s Disease work to fully regenerate missing or damaged tissue that the body would not ordinarily regrow.

Call your dedicated Care Coordinator at 800-531-0831 for more information.

 

Reference: Xu, Jin-Jin et al. (2018). Hyperbaric oxygen treatment for Parkinson’s disease with severe depression and anxiety. Medicine. 2018 Mar; 97(9): e0029.

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our team.

You have Successfully Subscribed!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!