PRP Therapy – Post Management Care

PRP Therapy – Post Management Care

Many studies support platelet-rich plasma (PRP) to help benefit patients with chronic pain and injuries. This article will cover the major aspects of post management care and the best tips to optimize results.

Important tips to keep in mind:

·   Avoid Taking any anti-inflammatory drugs after the procedure avoid for 14 days following the procedure

·   Apply heat only for 10-14 days , you may experience some soreness and swelling in this time period.

·   Avoid any strenuous activities, exercising and physical therapy for the week following treatment

·   Stay hydrated

·   Improvements typically begin after 2 weeks

About a week after the procedure, patients should start physical therapy, which involves myofascial release, gentle stretching, engaging the articular range of motion, and core stabilizing exercises.

Other activities (e.g., stationary bike, swimming) are also an appropriate choice during the recovery phase. Interventional imaging techniques such as stimulation therapy and Transcutaneous electrical nerve stimulation (TENS) should not be used at this stage.

Once 4-8 weeks have passed, patients can gradually engage in more intense activities, including yoga, Pilates, and light weight lifting. However, forceful rotation and manipulation are not recommended.

Following the correct guidelines during the first few weeks of recovery is crucial for the success of the procedure. The injected cells are quite delicate, hence the need to avoid strenuous physical activities that may cause irreversible damage to the cells.

Patients should also keep in mind that the side effect profile is diverse and can only be evaluated on a case-to-case basis. In other words, one patient might experience pain and inflammation after the procedure, while another presents with no symptoms.

The severity and extent of these symptoms are also dependent on the site of injection, with articulations being the most susceptible to traumatic injuries and side effects.

Recovery by weeks

Weeks 1 & 2

During this phase, you should restrict your movements and physical activity to avoid putting too much tension on your body. However, this doesn’t mean giving up to a sedentary lifestyle as it’s not the best approach.

Expect to experience pain, inflammation, and soreness.

Moreover, remember to avoid running, weight lifting, or any other strenuous exercise. Other activities, such as gentle stretching, are still allowed.

If you experience serious inflammation, consider using ice bags on the affected area , but try to avoid ice and NSAIDS until after the 14 day period. You can also use natural compounds that have potent anti-inflammatory properties, such as turmeric, CBD, and arnica.

Weeks 3 & 4

At this stage, the pain and inflammation should slightly subside, which allows you to practice more intense activities, but do not attempt to lift heavy weights or perform high-impact exercises. An appropriate number would be to keep the intensity of the workouts under 50% of what you’re used to. This will allow the stem cells to implant themselves in the damaged tissue and kick start the healing process.

Weeks 5 & 6

In this stage, focus on core-stabilizing exercises to strengthen your core muscles and give time for the joints to get used to the new routine. Activities such as stationary bike, elliptical, stretching, yoga, Pilates, and swimming exercise are permitted.

Weeks 7 & 8

Inflammation and pain might be gone at this time; however, you should still be careful about the type of exercises you’re performing. For patients who are still dealing with pain and swelling, you can use ice bags to accelerate the healing process.

Months 3–6

During this period, stem cells have reached their peak healing potential, which should not get interrupted with intense physical activity. Instead, settle down for less-strenuous workouts that do not involve any compressive, twisting, or pivoting movements. Avoid uneven ground. Contact a Care Coordinator today for a free assessment!

Using Stem Cells to Treat Nerve Damage in Multiple Sclerosis

Using Stem Cells to Treat Nerve Damage in Multiple Sclerosis

Multiple sclerosis is an inflammatory disease of the brain and spinal cord.  The immune system mistakenly attacks the covering of nerve axons called the myelin sheath. Just as an electrical cord that has lost its insulation cannot work properly, so too is it with nerve cells that have been destroyed by MS. Unfortunately, when electrical signals (action potentials) cannot move through axons, it causes neurological problems and disability. People with MS may lose the sense of touch, the sense of sight, the ability to move or walk, and the ability to control bowel or bladder function.

While treatments for MS are intended to reduce inflammation, no treatment has been developed that can repair damaged nerve cells. Scientists recently reviewed the status of stem cell clinical trials to treat multiple sclerosis. The results are encouraging.

No fewer than 8 clinical trials have shown that mesenchymal stem cells can be safely used in patients with MS. Moreover, the phase 2 clinical trials within this group showed that various stem cell treatments reduced the severity of MS. This is especially important because mesenchymal stem cells actually reduced the number of lesions (areas of inflammation and injury) in patients with MS compared to placebo.

Importantly the review determined stem cells were able to improve MS disease and nerve destruction regardless of whether the stem cells were collected from fat tissue, umbilical cord, or bone marrow. Stem cells retrieved from fat (i.e. adipose) reduced MS relapses and delayed the progression of the disease. Likewise, fat-derived stem cells improved sexual satisfaction and improved bowel control 12 months after treatment.

Why are the results of fat-derived stem cells so exciting? Because bone marrow can be difficult to access and umbilical cord tissue must be collected from donors. On the other hand, virtually everyone has excess fat on their bodies. This fat can be safely and easily removed with a simple extraction such as liposuction. A patient’s own fat cells can be removed, processed, and re-infused as stem cell treatment. When someone uses their own stem cells, there is no risk that the body will reject the infusion (as could theoretically happen to donor stem cells).

These results are exciting and welcome information for those who suffer from multiple sclerosis. As larger clinical trials are performed and previous results are replicated, we may see an increase in stem cell treatment options to help manage the symptoms of multiple sclerosis.

Reference: Bejargafshe, M., et al. (2019). Safety and efficacy of stem cell therapy for treatment of neural damage in patients with multiple sclerosis. Stem Cell Investigation. 2019; 6:44.

Exosomes from Bone Marrow-Derived Mesenchymal Stem Cells Reduce the Effects of Traumatic Brain Injury

Exosomes from Bone Marrow-Derived Mesenchymal Stem Cells Reduce the Effects of Traumatic Brain Injury

Traumatic brain injury is a single name given to a broad variety of conditions. In every instance of traumatic brain injury, some external force causes damage to the brain. This may be mild and short-lived, such as a concussion, or severe and permanent, such as severe head trauma. The initial trauma or injury can cause a number of injuries to the skull and brain such as skull fracture, cerebral contusion (“brain bruise”), cerebral edema (“brain swelling”), or hemorrhage (“brain bleed”).

Traumatic brain injury can also cause several secondary injuries that may continue for hours or days. The secondary effects of traumatic brain injury include:

  • Electrolyte imbalances
  • Mitochondrial dysfunction
  • Inflammation
  • Ischemia (lack of blood flow to parts of the brain)
  • Brain cell destruction

These secondary traumatic brain injuries can cause long-term and even permanent neurological dysfunction.

Unfortunately, there are very few treatments for traumatic brain injury. Neurosurgeons can sometimes stop brain bleeding, stabilize skull fractures, and reduce brain swelling; however, there is little that can be done to stop the secondary effects of traumatic brain injury. Doctors have tried using steroids or hypothermia (cooling the patient) to decrease inflammation and stop further injury, but these interventions are not highly effective.

Ideally, one would give a treatment soon after a person has had a traumatic brain injury. This treatment would reduce or block the secondary effects of traumatic brain injury. Scientists are studying whether stem cell treatment can do that very thing.

Researchers recently showed that exosomes from bone marrow mesenchymal stem cells were able to reduce the secondary effects of traumatic brain injury. They humanely caused a traumatic brain injury in a group of mice. Fifteen minutes after the TBI, half the mice were given an injection of stem cells and the other half received a placebo (i.e. saltwater).

The mice that received the stem cell exosome treatment did substantially better than the mice who received a placebo. Stem cell exosome treatment substantially reduced the size of the damage to the brain compared to control. Moreover, mice that received stem cell exosome treatment did better on sensory, motor, reflex, and balance tests. In other words, stem cell exosome treatment helped mice with traumatic brain injury move better than those that did not receive stem cell exosome treatment.

The scientists went on to show that exosome treatment helped block the secondary effects of traumatic brain injury on the cellular and molecular level. In short, stem cell exosome treatment reduced inflammation in the brain from TBI.

Taken together, these results strongly suggest that treatment with exosomes from bone marrow mesenchymal stem cells soon after traumatic brain injury has the ability to protect the brain from damage. Of course, this treatment will need to be tested in humans who have had incidental TBI. Nevertheless, the basic science results are quite exciting since few neuroprotective agents, if any, can block the secondary effects of traumatic brain injury the way exosomes did in this scientific report.

Reference: Haoqi, N., et al. (2019). Exosomes Derived From Bone Mesenchymal Stem Cells Ameliorate Early Inflammatory Responses Following Traumatic Brain Injury. Frontiers in Neuroscience. 2019 Jan 24; 13:14.

New Study Focuses on MS Symptoms Through Stem Cell Transplantation

New Study Focuses on MS Symptoms Through Stem Cell Transplantation

Multiple sclerosis (MS) poses distinct challenges for many individuals. Not only does it present an array of frustrating symptoms ranging from muscle weakness and numbness to vision and bladder problems, but in some patients, it may resist medications altogether. For patients in search for an alternative option for relapse-remitting MS, researchers at Duke University School of Medicine are exploring a new potential therapy in a clinical trial: stem cell transplantation.

 

 

The trial, which is highly selective and randomized, will test the efficacy of stem cell transplantation of bone marrow against several different immune reconstitution therapies. Participants will include patients for whom disease-modifying therapies have been ineffective in the past.

 

 

While the study’s investigators acknowledge the risks that come with immunosuppression, they are also optimistic in the treatment’s ability to manage some of the most progressive forms of MS, calling stem cell transplantation “one of the most promising therapies” for the condition. By reconstituting the immune system through suppression and then introducing stem cells, the objective is to combat the inflammatory flares that occur in the brain and spinal cord every 12 to 15 months in this form of MS.

 

 

Immune reconstitution has already shown promise in the past, and people with MS who have undergone the treatment have witnessed the absence of new symptoms several years after pursuing the therapy. Compared to existing therapies, many of which have been around since the early 1990s, the treatment could hold enormous potential under the right circumstances. The trial’s team is working diligently to mitigate potential risks and thoroughly examine any individual risk factors with prospective participants. Contact a Care Coordinator today for a free assessment!

 

The Source of Exosomes Matters

The Source of Exosomes Matters

Many clinical studies have shown the safety and benefit of exosomes. As a result, numerous companies have been bringing exosome products to market. However, not all exosomes are the same. The cell type from which the exosomes are collected makes an enormous difference in safety and results.

Scientists have recently drawn attention to the fact that cell type matters when it comes to exosomes. Virtually every cell in the human body releases small packets of substances called exosomes. The number of exosomes and the substances inside exosomes can vary considerably, depending on the type of cell. Exosomes derived from stem cells and stromal cells have received the most research attention. That is because exosomes from stem cells contain most of the substances that provide a benefit to patients from stem cells. In other words, if you receive treatment of exosomes from stem cells, you are basically getting additional benefits from the exosomes that you would have gotten from just the stem cells themselves. However, the source of the stem cell exosomes matter.

Most of the research done in this area revolves around two types of stem cells: Exosomes taken from bone marrow mesenchymal stem cells and exosomes taken from placental mesenchymal stem cells.  Bone marrow stem cells seem to have two major advantages over the placenta-derived stem cells. The first is that bone marrow stem cells have a stronger ability to modulate the immune system. The second is that bone marrow stem cells have immune privilege, which means they can avoid the body’s immune system. Specifically, placenta stem cell exosomes contain higher levels of PDL1 and HLA-G, which can make them more likely to provoke a negative immune response.

Surprisingly but reasonably, there have been of 63,000 scientific articles published on the safety and efficacy of bone marrow stem cells, but only about 1,200 on placenta stem cells.

Talk to your stem cell and exosome provider about your choices of exosomes, and make sure to ask from what cell type the exosomes are derived.

Reference: Hicok, Kevin & Vangsness, Thomas & Dordevic, Maxwell. (2020). Exosome Origins: Why the Cell Source Matters. 4. 1-4.

Stem Cell Therapy for Autoimmune Diseases

Stem Cell Therapy for Autoimmune Diseases

The immune system is divided into two major entities, depending on the type of action it exerts; the innate immune system and the specific immune system.

The innate immune system, which you can think of as the first responder to foreign pathogens that try to penetrate the body. This system is also referred to as non-specific immunity because it does not differentiate between different aggressors. The main components of the innate immune system include mechanical barriers (e.g., skin, acidic environment of the stomach, cilia found in the respiratory tract) and immune cells (e.g., macrophages, natural killers, neutrophils, basophils).

The specific immune system, which implements unique immune cells and antibodies to specifically target germs. For instance, when you get infected with the stomach flu, the immune system will produce specific cells and antibodies to the proteins found on the surface of that virus. As a result, it will be ready for the next aggressive episode since it has the necessary information to target the virus.

These two entities work to complement one another to keep us alive, with thousands of foreign pathogens destroyed every day. Now that you’re familiar with the immune system, let’s see how stem cell therapy may help in these cases.

What is an autoimmune disease?

An autoimmune disease is an inflammatory and immune reaction to self-antigens. In other words, the body will attack proteins found on harmless substances, such as blood cells, neurons, and pancreatic cells. Some examples of autoimmune diseases include lupus, multiple sclerosis, and rheumatoid arthritis.

Autoimmune diseases are poorly understood, hence the absence of any curative treatment. Most therapeutic approaches focus on long-term medical management that includes taking chemotherapeutic drugs, corticosteroids, and immunomodulators. Moreover, some severe cases may require surgical interventions.

Fortunately, recent research is showing positive results in patients who underwent stem cell therapy for their autoimmune disease using mesenchymal stem cells.

How does stem cell therapy help with autoimmune disease?

Stem cells have been extensively researched for their beneficial effects on several maladies, including the ones that get triggered by a defective immune system. The way that stem cells give this result is by repairing the damaged tissues and regulating the action of immune cells. Consequently, the cells will be less likely to attack self-antigens anymore, tempering down the symptoms of the condition.

Mesenchymal stem cells are a preferred type of cell that avoid ethical issues with extracting these cells and the efficacy they showed over the past few years. Researchers reported that MSCs focus most of their action on T regulatory cells that control the reaction of the specific immune system to foreign pathogens. If this line of cells is not well-regulated, the immune system will overreact to most antigens, resulting in the classic self-inflicted damage.

There are no cures for Autoimmune conditions, and some do find relief from traditional methods. However, there are risks and side effects to consider. Hopefully, a natural alternative option like stem cell therapy can provide additional options for those seeking treatment for autoimmune conditions. Contact us today for a free consultation!

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our team.

You have Successfully Subscribed!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!