Stem Cell Therapy For COPD

Stem Cell Therapy For COPD

Chronic obstructive pulmonary disease (COPD) affects 250 million people each year and is the cause of nearly 5% of deaths globally. This family of airway obstruction conditions is characterized by the loss of lung tissue and airway obstruction caused by chronic inflammation of the airways. As a result, components of the lungs, including the alveoli, are destroyed over time. Using regenerative medicine, including stem cell therapy, can address the damage caused by these conditions. 

What Is COPD?

COPD is a progressive disorder that makes breathing very difficult. As the airways become obstructed, patients may experience symptoms such as mucus production, wheezing, cough, and difficulty breathing. Smoking is believed to be the cause of 85 to 90% of COPD cases, though factors such as long-term exposure to pollution or irritants could also contribute to the conditions. 

The two main types of COPD are emphysema and chronic bronchitis. In emphysema, the alveoli at the end of the air passageways are destroyed by exposure to cigarette smoke or other irritants. In chronic bronchitis, the bronchial tubes become inflamed, which carry air to and from the air sacs. 

Currently, there are several types of medications available to help control flare-ups of COPD, but each patient responds differently to treatments. There are also oxygen therapies available to aid patients with low blood oxygen levels and to provide easier breathing.

Stem Cell Therapy for COPD

Stem cell therapy is a natural alternative to other medications that have caused serious side effects or failed to produce measurable improvements. Through this regenerative medicine approach, patients’ air sacs and damaged lung tubes have the potential to be repaired, lung capacity increased and improved breathing. 

Stem cells are the building blocks of the body due to their ability to regenerate and transform into virtually any specialized cell type. Through this treatment, stem cells are sourced by either the patient or an umbilical cord donor and re-delivered through direct injection, intravenously, and/or through a special nebulizer via inhalation. Depending on the patient’s condition, additional treatments may be needed. After stem cell therapy, COPD patients may be advised to undergo post-treatment lung rehabilitation to promoted optimal treatment outcomes.   

Stem cell therapy continues to be an active topic in regenerative medicine research. It is not a cure and it may not be right for all patients with COPD, but it could be a promising alternative to anyone who is looking for other options outside of treatments with severe side effects or those that haven’t shown beneficial outcomes. If you are interested in learning more about Stem cell therapy for COPD contact a care coordinator today!

How Can Stem Cells Help Multiple Sclerosis?

How Can Stem Cells Help Multiple Sclerosis?

Multiple sclerosis (MS) is an autoimmune condition in which the immune system attacks the protective sheath covering nerve fibers, known as the myelin. As a result, communication issues between the brain and other parts of the body occur. While there are currently several medications that can treat MS, some have serious side effects and may eventually stop working. So we ask ourselves ” How can stem cells help Multiple Sclerosis? ”

Recently, stem cell therapy has emerged as a new potential treatment option for people with relapsing-remitting MS (RRMS). In this version of the disease, symptoms may subside and then reappear in what’s known as a relapse. Eventually, RRMS can develop into a different form of MS in which symptoms stop subsiding. 

Stem Cell Therapy for MS 

Stem cells have the unique ability to transform into virtually any other differentiated cell type in the body. There are different stem cell therapy options in the field of Regenerative Medicine today. For instance, one is using hematopoietic stem cells that can differentiate into blood cells. In certain circumstances, doctors may use hematopoietic stem cell transplantation (HSCT) to treat RRMS. 

First, doctors prescribe medication to increase the production of bone marrow stem cells. They then take some blood and reserve the stem cells for later use. Next, they prescribe strong medications, including chemotherapy, to suppress the immune system. Patients will require monitoring during this period of weakened immunity, and may therefore require a prolonged hospital stay. 

Thereafter, the stem cells will be injected into the bloodstream to form new white blood cells and create an entirely new immune system. Until your immune system is functioning fully and independently, you’ll receive medications such as antibiotics to fight off illnesses or infections. 

The treatment can take weeks, and recovery may take several months. Each individual is different, but many see a return to normal immune system functioning within six months. 

Is Stem Cell Therapy a Potential Option for MS?

MS is a chronic disease for which there is currently no full cure, but results of stem cell therapy clinical trials are promising. In one, 69% of people had no relapse of MS symptoms or new brain lesions five years after receiving the treatment. 

As with any treatment, it’s important to consider the risks involved with HSCT as well. For this therapy in particular, the risks of immune system suppression can be considerable. Nonetheless, for people with highly inflammatory RRMS with serious relapses and progressing symptoms, the risk/benefit ratio may be worth reviewing. Other studies are also showing potential for those with Multiple Sclerosis that how shown to be safe and effective. 

Is It Possible to Regrow Cartilage in the Joints?

Is It Possible to Regrow Cartilage in the Joints?

In adulthood, cartilage has almost no regenerative potential. Cartilage damaged by disease, injury, or simply as part of the aging process can therefore not be replaced by the body on its own. As a result, bones may eventually rub against one another, resulting in pain and arthritis, a condition at least a fifth of all U.S. adults experience. So is it possible to regrow cartilage?

Recently, however, researchers from the Stanford University School of Medicine have discovered a means to regrow cartilage by manipulating stem cells, the body’s natural repair kit, and the foundation upon which all specialized cell types are developed. Specifically, the researchers found that using microfracture, or minimal injuries in the joint, can prompt the development of articular cartilage, the special type of tissue that provides a cushion between the joints. During microfracture, tiny holes are drilled into the joint to stimulate the healing process.

Traditionally, microfracture would create a substance called fibrocartilage, which more closely resembled scar tissue than cartilage. It wouldn’t behave the same as articular cartilage and would degrade quickly. By manipulating the microfracture process, however, they could direct new tissue to reach the cartilage stage. 

First, they used a specific molecule known as bone morphogenetic protein 2 (BMP2) to trigger bone formation after microfracture. To prevent the regenerated tissue from becoming bone, they’d then stop the process using a different signaling molecule, vascular endothelial growth factor (VEGF). Both BMP2 and VEGF have been used for other clinical applications and are already considered safe and effective by the FDA. 

As of yet, the studies have only been performed on animals. Eventually, researchers plan to move onto larger animals and larger joints. Once the treatment is ready for human clinical trials, researchers believe smaller joints will be the first focus; for instance, people with arthritis in the fingers and toes may be among the first to receive the treatment. 

While this regenerative process holds promise, it likely won’t be available for several years. Moreover, researchers speculate that it may be most effective as a preventive treatment, or for patients in the earliest stages of cartilage loss. Fortunately, patients who already have considerable joint damage can consider other regenerative treatments, including stem cell therapy, to help alleviate pain and inflammation. For more information contact a care coordinator today!

Advancing Stem Cell Treatment for Traumatic Brain Injury

Advancing Stem Cell Treatment for Traumatic Brain Injury

According to the CDC, in 2019, traumatic brain injury (TBI) contributed to nearly 61,000 deaths in the United States alone[1]. While there are several clinical treatments designed to address the neurological dysfunction after sustaining a TBI, including hyperbaric oxygen, brain stimulation, and behavioral therapy, none appear to produce satisfactory or lasting results.

In recent years, several studies have demonstrated the therapeutic potential of various stem cells, including mesenchymal stem cells (MSCs), neural stem cells (NSCs), Multipotent adult progenitor cells (MAPCs), and endothelial progenitor cells (EPCs) in the treatment of neurological impairment resulting from TBI. Specific benefits of these stem cells observed throughout these studies demonstrate that exogenous stem cells have the ability to migrate to the site of damaged brain tissue,  help to repair damaged tissue, and significantly improve neurological function.

In this article, Zhou et al. review recent findings on the role, effects, deficiencies, and related mechanisms of the various stem cells being used as therapeutic agents in the treatment of TBI.

Examining numerous studies occurring between 2010-17 and exploring various TBI models and the roles of different stem cells in animal models, the author’s general summary is that the use of stem cells demonstrated some form of measurable improvement in every study reviewed.  As a reference, specific observed benefits included improved integrity of the blood-brain barrier; improved neurological function, social interaction, and motor performance; enhanced neurovascular repair and recovery; and enhanced cognitive and spatial learning, information retention, and memory retrieval.

The authors point out that although there appears to be a large amount of research exploring the complexity of pathophysiology and the application of stem cell therapy for treating TBI, many problems still exist and must be addressed before the best method for TBI recovery can be determined.

Specifically, while there have been several clinical studies exploring the role of stem cells in the role of TBI treatment and recovery, and while most demonstrate promising results, the studies have almost universally been completed on mice and/or rats, contained human sample sizes that are not large enough,  or failed to include a control group.  As a result, Zhou et al. call for further study, including multi-center long term follow-up and randomized prospective trials that examine the safety of stem cells, route of injection, the time of injection, and the specific mechanisms as a way to identify the appropriate and effective stem-cell-based therapeutic treatment options for those suffering from various types of TBI.

Source:  (2019, August 13). Advance of Stem Cell Treatment for Traumatic Brain Injury. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6700304/

[1] (2021, May 12). Get the Facts About TBI | Concussion …. Retrieved from https://www.cdc.gov/traumaticbraininjury/get_the_facts.html

How is Stem Cell Therapy Helping ALS Patients?

How is Stem Cell Therapy Helping ALS Patients?

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease, is a rare disease in which the body’s neurons that control voluntary muscles begin to degenerate. Patients experience muscle weakening and involuntary spasticity, as well as symptoms such as muscle cramps and stiffness, and eventually, difficulty moving, speaking, swallowing, and breathing. 

While there is currently no cure for the devastating illness, there are drugs that can increase the quality of life and marginally slow the disease’s progression. Researchers have long been pursuing a more effective treatment for the disease, and efforts were increased significantly as a result of the 2014 viral Ice Bucket Challenge, which raised at least $115 million for research efforts.

Stem Cell Therapy for ALS

One area that’s of particular interest to researchers is regenerative medicine therapy. Also known as stem cell therapy, this option could be a potential treatment for ALS, as it could help sustain and nurture motor neurons that have been compromised by the disease. This is due to stem cells’ ability to release neurotrophic factors, which support and protect nerve cells. This is not a cure, nor a guarantee, but is an option to help slow down the progression of the condition.

Stem cells can be harvested from sources such as the umbilical cord (Wharton’s Jelly), or the patient’s own adipose (fat) tissue, then strategically transplanted at locations such as the spinal canal, intravenous, or muscle tissue. Once in the brain tissues, stem cells have the potential to protect healthy neurons and replace those that have been compromised. 

Experts are using stem cells both for research purposes, by creating cells genetically identical to patients to see how they’ll respond to treatments, as well as for treating patients directly. With their protective qualities, the cells can help preserve healthy cells and repair or replace those that have been damaged. 

According to results from clinical trials, 87% of patients who received the treatment responded to the treatment with at least 25% improvement and slowed disease progression. Evidence also suggests the treatment is safe and well-tolerated. 

While much of how ALS develops remains a mystery, researchers are hopeful that further investigation into stem cell therapy will help to drastically improve treatment outcomes compared to the drugs currently available. If you would like to learn more contact a care coordinator today!

Using Mesenchymal Stem Cells for Musculoskeletal Regeneration in Clinical Applications: Current Status and Perspectives

Using Mesenchymal Stem Cells for Musculoskeletal Regeneration in Clinical Applications: Current Status and Perspectives

Research exploring the benefits of mesenchymal stem cells (MSCs) has demonstrated tremendous potential as a regenerative therapy option for the musculoskeletal system. Research into these cell-based regenerative therapies is promising, and they must continue to provide the data necessary to show their therapeutic potential in clinical settings. 

In this review, Steinert et al. review and summarize some of the promising and unique therapeutic features of adult MSCs, detail their current state of clinical application as a regenerative musculoskeletal therapy, and describe the potential for future developments in this field.

Specifically, as a part of this review, the authors share the status of 31 clinical cell therapies for musculoskeletal regeneration occurring between 1996 through 2011 and specifically covering bone defects and nonunions, avascular necrosis of the hip, cysts and benign tumors of the bone, cartilage lesions, and tendons and ligaments; results for the majority demonstrate the safety of and/or the efficacy associated with the specific method of cell-delivery being evaluated.

The field of regenerative orthopedics points to the large body of MSC clinical research indicating the successful treatment of myocardial infarction, post-stroke or spinal cord injury nerve regeneration, graft versus host disease, and a variety of other conditions as an indication that the application has tremendous potential as a regenerative therapeutic option in a wide variety of musculoskeletal indications.

Although there appears to be evidence demonstrating the paracrine and trophic functions of MSCs, research explaining the specifically demonstrated therapeutic effects is still being determined. The authors highlight that research continues to explore the reasonable therapeutic expectations associated with MSC-based treatments, an essential step required to fully understand the range of healing associated with musculoskeletal regenerative cell-based therapy.

The authors, in concluding this review, point out that the demand for MSC-based musculoskeletal regenerative therapies continues to increase. Steinert et al. call for further study into the specific combination of cell preparation, bioactive factors, and stimuli for each specific MSC therapeutic application. Once these have been demonstrated for each application and should they demonstrate better or improved outcomes compared to standard treatments, only then can they be considered for long-term clinical application.

Source:  (n.d.). Concise review: the clinical application of mesenchymal stem cells …. Retrieved from https://pubmed.ncbi.nlm.nih.gov/23197783/

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our team.

You have Successfully Subscribed!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!