Exercise as a Key to Stroke Prevention

Exercise as a Key to Stroke Prevention

The Centers for Disease Control and Prevention states that an average of 795,000 people each year in the United States suffer a stroke. The majority of these are new strokes. Knowing whether you have a high risk of suffering a stroke is important, but so is knowing what you can do to lower your risk. 

One important step you can take for stroke prevention is exercise. Learn more about what causes strokes and why exercise can be such an important prevention tool. 

Understanding Strokes: What They Are and What Causes Them

You can think of a stroke as the equivalent of a heart attack on your brain. It is a life-threatening condition that occurs when a part of your brain doesn’t receive an adequate amount of blood. Strokes usually occur from experiencing bleeding in the brain or a blocked artery. 

There are two main types of strokes: ischemic and hemorrhagic strokes. Ischemic strokes happen when cells don’t get enough blood and therefore don’t get enough oxygen. An ischemic stroke occurs if something blocks blood vessels in the brain. Blood clots can lead to ischemic strokes.

Hemorrhagic strokes lead to bleeding in or around your brain. It can occur if a blood vessel in your brain breaks open and causes bleeding that puts pressure on your brain tissue. It can also happen if you experience bleeding in the space between the brain and its outer covering. 

The symptoms of a stroke vary depending on which areas of the brain it affects. You can experience one or more symptoms like:

  • Difficulty speaking 
  • Blurred or double vision
  • One-sided weakness 
  • Paralysis
  • Loss of muscle control on one side of the face
  • Loss of coordination
  • Dizziness
  • Vomiting
  • Nausea
  • Slurred speaking
  • Partial or total loss of one of the senses
  • Memory loss
  • Seizures
  • Headaches

The cause of the stroke can depend on the stroke type. Ischemic strokes usually occur because of blood clots, while hemorrhagic strokes happen as a result of high blood pressure, brain cancers, brain aneurysms, and more. 

Some factors can put you more at risk of suffering a stroke. These are:

  • Obesity
  • Smoking
  • Poor diet
  • Physical inactivity 
  • Diabetes

Strokes have the potential to occur at any age, but the risk rises as you grow older. If there’s a history of strokes in your family, you’re also more likely to suffer from one yourself. Drinking too much alcohol is another way to increase your chances of a stroke. 

How Exercise Helps to Prevent Strokes

Exercise plays a role in reducing several stroke risk factors, including diabetes, high blood pressure, and even stress. For primary stroke prevention, high blood pressure is the most important risk factor. Physical activity helps control blood pressure because it improves vascular function. 

Type 2 diabetes increases the chances of having a stroke because excessive blood glucose levels over time increase fatty deposits. These deposits narrow or block blood vessels, cutting off blood to the brain. Exercise helps improve glycemic control, so it can be an important way of managing your type 2 diabetes. 

Exercise also helps promote lower cholesterol levels. Having high cholesterol levels causes plaque buildup in your arteries, including those that send blood to your brain. 

For older people or those with certain medical conditions, turning to light exercise may be beneficial. Some options include gardening, taking walks, and even doing housework. The key is to avoid being inactive for long periods. 

For adults who can manage moderate exercise, it’s important to engage in at least 2 ½ hours of exercise per week. You can choose activities like cycling, brisk walking, swimming, or anything else that gets your heart rate up.

Other Lifestyle Changes for Stroke Prevention

Besides adding more physical exercise to your life, you can also turn to other strategies to help prevent a stroke. For one thing, if you smoke, you should quit. Smoking significantly damages blood vessels, triggering plaque formation and even causing blood vessel breakdown. Smoking increases your blood pressure, too. 

You should take a close look at your diet. Eating a diet that causes higher cholesterol levels can contribute to the development of plaque. Plaque narrows arteries and makes blood clots more likely. 

Stick to lean proteins, unsaturated fats, fruits, and vegetables, and avoid sugary foods and saturated fats. You should also add fiber-rich foods to your diet. It is also important to cut down on the amount of alcohol you drink. Alcohol increases your blood pressure, making blood clots more likely to happen. Blood clots can cut off your blood supply and lead to strokes. 

Another important step you can take if you want to prevent a stroke is to incorporate stress management techniques into your day. Stress makes the heart work harder, which increases blood pressure. 

At the same time, sugar and fat levels in the blood also increase when you experience stress. They impact arterial health as well. All these factors may lead to the development of clots. Finding ways of managing stress goes a long way toward addressing these issues. 

You can opt for doing deep breathing exercises, as well as focusing on mindfulness strategies to help you stay in the present. Some people benefit from meditation or yoga, while others do better if they take time to exercise. Taking up relaxing hobbies is another excellent option.

Regenerative Medicine: Can It Help with Strokes?

Working to prevent strokes is important, and your strategies for doing so can be as simple as adjusting your diet and adding exercise to your daily routine. If you’ve already experienced a stroke, however, you can also use these strategies to prevent future ones. Lowering your blood pressure, managing your diabetes, and lowering stress levels can all help. 

If a previous stroke has left you with symptoms that affect your life, a treatment option that shows promise is stem cell therapy. Stem cell therapy encourages your body to heal using its natural processes, allowing you the chance to regain some of your brain’s lost function. Ask your doctor about regenerative medicine options like stem cell therapy. 

A Comprehensive Review of Mesenchymal Stem Cell Therapy in Amyotrophic Lateral Sclerosis (ALS) Patients

A Comprehensive Review of Mesenchymal Stem Cell Therapy in Amyotrophic Lateral Sclerosis (ALS) Patients

Amyotrophic lateral sclerosis (ALS) is a rare, deadly progressive neurological disease that affects the upper and lower motor neurons. Characterized by weakening and gradual atrophy of the voluntary muscles, ALS gradually affects the ability to eat, speak, move, and eventually breathe.

With an estimated survival rate of 2 to 5 years from disease onset, 90% of ALS patients develop sporadic ALS and there is no known cure. Although the cause of ALS remains unknown, there is scientific evidence that both genetics and environment are key contributors. This evidence includes over 30 different gene mutations and a number of environmental factors (exposure to toxins, heavy metals, pesticides, smoking, and diet) have been found to be associated with neurological destruction and ALS development. Additionally, ALS has been found to be approximately 2 times more likely to occur in men than women. 

In the search for a definitive cure for ALS, the use of mesenchymal stem cells (MSCs) for both treatment and management of the condition has been increasingly more common in preclinical and clinical studies. 

In this review, Najafi et al. discuss multiple aspects of ALS and focus on MSCs’ role in disease management as demonstrated in clinical trials. 

MSCs are multipotent cells with immunoregulatory, anti-inflammatory, and differentiation abilities that make them a strong candidate for use in therapeutic applications intending to expand the lifespan of ALS patients. 

To date, preclinical research investigating the cause and potential treatment of ALS primarily relies on data gathered from rat and mouse models. As part of these models, researchers have discovered that the transplantation of MSCs through multiple routes (including intrathecal, intravenous, intramuscular, and intracerebral) can be a safe and effective way to delay the decline of motor function and promote neurogenesis.  

These preclinical studies have also demonstrated that the administration of MSCs from specific tissues has shown significant advantages in delaying the degeneration of motor neurons, improving motor function, and extending lifespan.

Over 20 years of clinical research have found that direct injection of autologous expanded MSCs is safe and well tolerated and demonstrated a significant decrease in disease progression and increase in life expectancy in patients. 

The authors conclude that ALS is a fatal neurodegenerative disease with no definitive cure.  However, several preclinical and clinical studies have shown that MSC’s anti-inflammatory, immunoregulator, and differentiation properties, have demonstrated to be a good therapeutic approach for treating ALS.  

Source: Najafi S, Najafi P, Kaffash Farkhad N, et al. Mesenchymal stem cell therapy in amyotrophic lateral sclerosis (ALS) patients: A comprehensive review of disease information and future perspectives. Iran J Basic Med Sci. 2023;26(8):872-881. doi:10.22038/IJBMS.2023.66364.14572

Breaking Down the Causes of Lower Back Pain

Breaking Down the Causes of Lower Back Pain

According to the World Health Organization, lower back pain affects 619 million people around the world. Lower back pain is an issue that people of all ages suffer from, and it can be debilitating. Many conditions, injuries, and damage can lead to this kind of back pain. 

If you’re struggling, understanding the causes of the problem can help when deciding on the right treatment. Let’s take a closer look at the causes of lower back pain. 

Muscle Strain or Sprain

Perhaps the most common reasons people experience lower back pain are muscle strains and sprains. These issues can occur gradually from overuse, or they can occur suddenly after an injury

A low back strain occurs if you stretch the muscles that hold your spinal column in place. Tiny tears can form, leading to weaker muscles that have a harder time holding the bones of your spinal column correctly. That leads to the spine being less stable, which causes lower back pain. 

A sprain occurs when the ligaments, which are the bands of tissue that hold bones together, tear away from their attachments. This, too, can happen from overuse or from an injury. The most common symptoms of muscle strains or sprains are muscle spasms, stiffness, and pain. 

Degenerative Disc Disease

Degenerative disc disease is a condition in which the cushioning in your spine wears away. Your spinal discs are cushions between the bones (vertebrae) in your spinal column. They help you move and act as shock absorbers.

However, as you age, these discs begin to wear away, leading the bones to start rubbing together. Injuries and diseases can also wear away the discs.

Some of the symptoms of degenerative disc disease are:

  • Pain that worsens when bending, lifting, or sitting
  • Numbness and tingling in your legs or arms
  • Pain that radiates down to your lower back and buttocks

The symptoms can come and go, and they can last for weeks or months at a time. The pain can range from mild to severe. 

Herniated Discs

Herniated discs are injuries to the spine. Between the vertebrae in your spine are cushions called discs. The discs function as buffers, letting you move around with ease. If one of these discs tears or leaks, you have a herniated disc. 

It’s a condition that affects men more than women, and it’s more likely to occur in people who sit for long periods, lift heavy objects, perform repetitive twisting or bending motions, or smoke.

Discs have gel-like centers and a firm outer layer, which can crack over time. When the inner gel-like substance pushes through the crack, you have a herniated disc. That leaked material can press on spinal nerves.

Sciatica

Sciatica is nerve pain that occurs because of an injury or irritation to the sciatic nerve. You have two sciatic nerves, one on each side of the body, that run down your legs until they reach below your knee, where they then split into other nerves. Pain that occurs anywhere along that nerve is considered sciatica pain. 

Herniated discs can cause sciatica as can arthritis, degenerative disc disease, and injuries. You are more at risk if you are obese, don’t have a strong core, or have a job that requires lots of lifting. 

Osteoarthritis

This is the most common type of arthritis, and it occurs when the cartilage that covers your joints wears down over time, allowing your bones to rub together. Cartilage functions like a shock absorber as well as a lubricant, letting the bones that make up your joints move smoothly. With arthritis, this movement is more difficult and painful.

One of the most commonly affected areas is the lower back. Although it’s not entirely clear what causes osteoarthritis, scientists believe it occurs as a result of aging, health conditions that affect your joints, falls, and other accidents. 

Spinal Stenosis

Spinal stenosis is a condition in which the space around your spinal cord becomes too narrow, leading to irritation of the cord or the nerves that branch off from it. You can think of your spinal canal as a tunnel that runs through each of the vertebrae that make up your spine. Your spinal cord is contained within this tunnel. 

If the space narrows, your nerves can become compressed or pinched, causing back pain. Symptoms can depend on the type of spinal stenosis you have and can include:

  • Heavy feeling in your legs
  • Tingling or numbness in the foot, leg, or buttocks
  • Pain that gets worse when you stand or walk for a long time
  • Pain in your lower back 

You can have acquired spinal stenosis, meaning it develops over time, or congenital spinal stenosis, which you have from birth. Herniated discs, osteoarthritis, spinal injuries, and many other conditions can cause it. 

Spondylolisthesis

Spondylolisthesis is a condition that causes lower back pain, and it occurs when one of the bones in your spine slips out of place and onto the bone below it. This can put pressure on a nerve, resulting in back or leg pain. 

Common symptoms of spondylolisthesis include:

  • Difficulty walking or standing for long periods
  • Back stiffness
  • Hamstring muscle spasms
  • Pain when bending
  • Foot tingling, weakness, or numbness 

Young athletes, especially gymnasts and football players, are at risk. Some people are born with spondylolisthesis.

Fractures

If you have a fracture in a bone in the lower back, this can also cause lower back pain. Fractures can occur from traumatic injuries like falls or conditions like osteoporosis. 

Regenerative Medicine for Lower Back Pain

No matter what is causing your lower back pain, you can get relief from symptoms. Most people turn to pain medications and anti-inflammatories to treat back pain, but all that those drugs do is hide the symptoms. They don’t get to the underlying cause of the problem. Regenerative medicine offers something different. 

Regenerative medicine, also known as stem cell therapy, stimulates the natural healing process that you need to start feeling better. Turn to your healthcare provider to see if it’s the right choice for you.

Stem Cell Therapy for Stroke Recovery

Stem Cell Therapy for Stroke Recovery

According to the Centers for Disease Control and Prevention, more than 795,000 people have strokes every year in the United States, and about 610,000 of these are first or new strokes. Recovering from a stroke can be a complex process that involves many types of therapies, and one option that shows promise is stem cell therapy. 

Stem cell therapy promotes growth factors and offers relief from inflammation, providing the possibility of healing the damage the stroke caused. Learn more about stem cell therapy when used for the recovery period after a stroke. 

How Strokes Affect the Brain

A stroke is like a heart attack, except it takes place in your brain. It occurs when something blocks the blood supply to the brain, not allowing the organ to get the oxygen and nutrients it needs. If your brain doesn’t receive blood, its cells begin to die off or suffer damage, making it impossible for the organ to do its job. 

Your brain controls everything your body does, including how you move and how you think, feel, and communicate. The results of a stroke are immediate. 

The two main types of strokes are ischemic strokes and hemorrhagic strokes. Ischemic strokes are the most common type and are caused by blockages. They can occur when:

  • A blood clot forms in the main brain artery.
  • A blockage forms in the small blood vessels deep within the brain.
  • A blood clot from the heart or another type of blockage travels via the bloodstream to an artery supplying the brain.

Hemorrhagic strokes occur when there’s bleeding in or around the brain. They can be the result of a blood vessel bursting in the brain, or a blood vessel on the surface of the brain may burst and leak blood in the area between the skull and the brain. 

When you have a stroke, the areas of the brain it affects determine the kind of issues you can struggle with. 

Some people experience weakness and paralysis in certain parts of their body, while others struggle with language and the processes of speaking or understanding what other people say. A stroke can even affect what your voice sounds like. 

Other issues you may experience include:

  • Balance problems
  • Incontinence
  • Trouble swallowing
  • Visual problems
  • Extreme fatigue
  • Feeling pain

You may also struggle with mental processes like memory, concentration, understanding, and perception. Strokes can even affect your emotions. 

Understanding Stem Cell Therapy: What Are Stem Cells?

Stem cells are the body’s building blocks. They are responsible for creating organs, tissues, and even your immune system. They are undifferentiated cells that can become and create specialized cell types. In other words, they can become any cell within the body, depending on where they’re placed. 

Stem cells can also divide indefinitely, either creating other stem cells or specialized cells. When used to help the recovery period after a stroke, stem cells can differentiate into brain cells. 

When they’re used in the brain, they don’t integrate and become neurons that reconstruct circuits. They instead start pumping out growth factors that enhance the recovery process, allowing new blood vessels and neurons to form. All of this helps make the brain more flexible, giving it a chance to recover after a stroke. 

Neuroplasticity is what’s necessary for people who’ve suffered a stroke. It is the ability of the brain to rearrange its circuits, basing the organization on your behaviors. 

Benefits of Stem Cell Therapy After a Stroke

Stem cell therapy is minimally invasive. You don’t have to worry about procedures that require long recovery processes or force you to spend time in the hospital. When you get stem cell therapy, the process is fast and can be done as an outpatient treatment. 

Stem cells don’t just mask the symptoms of the damage the stroke caused. Experiencing pain after a stroke many times means turning to pain medications, which temporarily give you relief but also have unpleasant side effects. When you turn to stem cell therapy, your brain gets what it needs to start healing. 

One of the most important things that stem cell therapy offers is the chance to relieve inflammation. When you suffer an injury of any kind, including a stroke, your body’s natural healing process causes inflammation. 

This type of swelling, however, doesn’t allow a regular flow of blood to the injured area. Without the right degree of circulation, the damaged area doesn’t receive nutrients or oxygen, which makes healing more difficult. Stem cells help reduce inflammation, making the process of healing easier. 

How the Stem Cell Therapy Process Works

Mesenchymal stem cells (MSCs) have been studied for their potential therapeutic applications in various medical conditions, including stroke. MSCs have several properties that make them attractive candidates for stroke therapy:

  • MSCs possess anti-inflammatory properties that can help modulate the immune response and reduce inflammation in the brain following a stroke. Excessive inflammation is a key contributor to secondary damage after a stroke. 
  • MSCs can modulate the immune system, potentially suppressing harmful immune responses while promoting tissue repair and regeneration.
  • MSCs secrete various growth factors and neurotrophic factors that support neuronal survival, growth, and differentiation. These factors can contribute to the repair and regeneration of damaged neural tissue.
  • MSCs can stimulate the formation of new blood vessels (angiogenesis), which is crucial for supplying oxygen and nutrients to the damaged brain tissue.
  • While the ability of MSCs to differentiate into neurons is limited, they may contribute to neural repair indirectly by interacting with the local environment and supporting the survival of existing neurons. 

Is Regenerative Medicine Right for You?

Suffering a stroke can be devastating, leaving you with lasting damage and impacting your quality of life. Along with physical therapy and other treatments your doctor recommends, patients are exploring their options with stem cell therapy. Stem cell therapy and other regenerative medicine options offer the opportunity to give your brain the tools it needs to start healing. By helping reduce inflammation and bringing growth factors to the treatment area, stem cell therapy provides the chance to promote neuroplasticity and start healing

Mesenchymal Stem Cells and MSCs-Derived Extracellular Vesicles Immunomodulatory Effects in Systemic Lupus Erythematosus

Mesenchymal Stem Cells and MSCs-Derived Extracellular Vesicles Immunomodulatory Effects in Systemic Lupus Erythematosus

Systemic lupus erythematosus (SLE) is a common multisystemic autoimmune disease that often results in multi-organ damage when left untreated. Currently affecting over 1.5 million Americans, the etiology and pathogenesis of SLE continue to remain unclear. 

At present, glucocorticoids and immunosuppressants are the most prescribed course of therapeutic treatment and mostly as a way to manage and treat symptoms of SLE, not the cause itself. 

Considering that the etiology and pathogenesis of SLE are accompanied by immune disorders including abnormal proliferation, differentiation, and activation and dysfunction of T cells, and that mesenchymal stem cells (MSC) and MSC-derived extracellular vesicles (EVs) play important roles in the immunity process, researchers are increasingly turning their attention to MSCs and EVs as potential therapeutic treatment options for SLE.  

In this review, Yang et al. examine the immunomodulatory effects and related mechanisms of MSCs and EVs in SLE with hopes of better understanding SLE pathogenesis and guiding biological therapy. 

Examining the potential use of MSC and MSC-EVs in SLE treatment the authors found some studies have established that MSCs reduce adverse effects of immunosuppressive drugs and when combined have demonstrated distinct effects on T cell activation and bias.  

Additionally, Yang et al. report that MSCs are able to participate in the immune response in two distinct ways: paracrine effect and directly through cell-to-cell interaction. Since reconstruction of immune tolerance and tissue regeneration and repair are required parts of SLE treatment and since MSCs possess high self-renewal ability, rapid expansion in vitro and in vitro, and low immunogenicity, allogeneic MSC transplantation has demonstrated strong evidence for the therapeutic potential of MSC in SLE. 

Besides the ability to repair and regenerate tissue, MSCs, and MSC-EVs have strong anti-inflammatory and immunomodulatory effects, making them a potentially ideal treatment option as part of a therapeutic strategy for SLE. Considering that MSC-EVs have similar biological functions with MSCs, but are also considered cell-free, the authors point out that MSC-EVs could be the better choice for SLE treatment in the future.

Despite the potential of MSC and MSC-EVs, Yang et al. point out that genetic modification, metabolic recombination, and other priming of MSCs in vitro should be considered before MSC/MSC-EVs application for SLE treatment. The authors also recommend further clinical evaluation of the time of infusion, appropriate dosage, interval of treatment, and long-term safety of MSC/MSC-EVs in the treatment of SLE before any form of the combination is used as a treatment option.


Source: “Immunomodulatory Effect of MSCs and MSCs-Derived Extracellular ….” 16 Sep. 2021, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8481702/.

Good Habits, Therapies, and Treatments for COPD

Good Habits, Therapies, and Treatments for COPD

Chronic obstructive pulmonary disease (COPD) affects nearly 16 million adults in the United States. According to the Centers for Disease Control and Prevention, it is the sixth leading cause of death in the country.  COPD refers to a number of progressive lung diseases that affect all aspects of your life, potentially leading you to not being able to work or participate in your favorite activities. There are some good habits, therapies, and treatments for COPD that you can turn to. 

The Basics of a COPD Diagnosis

COPD is an umbrella term that includes a number of different progressive lung diseases. A COPD diagnosis means you have one or more of these conditions — the two most common being chronic bronchitis and emphysema. 

Chronic bronchitis irritates the bronchial tubes, leading to their swelling. This causes mucus to build along the lining, making breathing more difficult. People who smoke or who have chronic bronchitis have damaged cilia, which are tiny hairs that usually move mucus out of the way. This means the mucus continues to build up. 

Emphysema is the wearing down of the walls of the alveoli, or minuscule air sacs, found at the end of your bronchial tubes. These air sacs help transfer oxygen into your blood and carbon dioxide out, so if they don’t work efficiently, breathing becomes very difficult. 

Some of the symptoms of COPD include:

  • Wheezing 
  • Shortness of breath performing regular activities
  • Cough with mucus that persists
  • Struggling to take a deep breath

Smoking is one of the main causes of COPD, but it can also result from being exposed to secondhand smoke, air pollution, and workplace fumes and dust. 

Most people who have COPD have a combination of emphysema and chronic bronchitis. Although there’s no cure for COPD, there are many treatments and lifestyle change you can try to get relief from symptoms. 

Learning to Manage COPD Symptoms

To manage your COPD, you can turn to a number of strategies

Medications: Bronchodilators and More

Bronchodilators come as nebulizers or inhalers because this allows the medications to reach your airways faster. Bronchodilators help open constricted airways, and there are two types of them — β-agonists and anticholinergics. 

There are also anti-inflammatory medications you can inhale or take in pill form. Expectorants are another type of medication you may need. Expectorants help thin out mucus so that you can cough it up more easily. 

Regenerative Medicine: Stem Cell Therapy

One of the most promising options for the treatment of COPD is regenerative medicine. Stem cell therapies allow you to stimulate your body’s natural healing processes, helping reduce inflammation so that the nutrient- and oxygen-rich blood can better reach your lungs and bronchial tubes. 

Reducing inflammation can make breathing easier and can even reduce mucus production. Although stem cell therapy won’t cure COPD, it can help with the symptoms and might even help with the regeneration of damaged tissues in your airways. 

Lifestyle Changes: Healthy Habits to Turn To

Making lifestyle changes is also important treatments for COPD. Staying active can be one of the most difficult things to do when it’s tough to get enough breath, but exercising helps strengthen muscles while also improving endurance. Exercise helps your body learn to use oxygen more efficiently. Try activities like walking, golfing, and gardening.

If you smoke, it is best to quit. If there are others in your family who smoke, you also need to get them to quit because every time you are exposed to smoke, it irritates your airways and causes more damage. 

You also want to maintain a healthy weight. Being overweight puts pressure on your whole body, including your lungs and airways. Losing weight can help improve your breathing, reducing the episodes of shortness of breath. 

Make sure to eat correctly as well. Avoid foods that can cause inflammation, including sugar, fried items, processed meats, and more. Reduce your intake of junk food. Instead, add more fruits and vegetables to your diet. 

Consider getting vaccinated for the flu and other potential respiratory illnesses. Any infection can make COPD symptoms worse, so taking preventive actions can save you a lot of stress. In the same vein, wash your hands often and limit exposure to people who may be ill. 

If you need to use supplemental oxygen, make sure to use it exactly as your doctor recommends. Lots of people don’t want to be seen with their oxygen tanks and cannulas when they are out in public, but not using them can be detrimental to your health. 

You need to get enough rest as well. Shortness of breath can exhaust you, weakening your systems and making dealing with everyday life more difficult. When you get a good amount of rest, you allow your body to repair itself. 

The air quality in your home is also crucial. Indoor air in homes is often more polluted than outdoor air. Installing a filter can be a great way of improving air quality. 

Although it’s impossible to avoid all instances of stress, reducing it as much as possible is important. Stress causes the release of cortisol, which can trigger inflammatory responses in the body. This inflammation makes COPD symptoms worse. 

You also need to avoid your COPD triggers. These can be different for everyone, so understanding what causes worsening issues is crucial so that you can make the necessary adjustments to your lifestyle and environment. It can include avoiding certain cleaning products, ensuring that there’s no dust in your living space, and more. 

Living With COPD Is Possible

If you have COPD, you may not be sure what treatments options will offer the kind of results you can depend on. For most people, a combination of medications, lifestyle changes, and even regenerative treatments provide the necessary help for the management of symptoms. 

Stem cell therapy and other regenerative medicine options can assist in the reduction of inflammation and even help bring better blood flow to the lungs. Ask your healthcare provider if it is the best choice for your COPD. 

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our team.

You have Successfully Subscribed!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!