What is the Difference in Various Stem Cells?

What is the Difference in Various Stem Cells?

As patients start to investigate the many different types of stem cells, it can become overwhelming. Often stem cells are organized into groups by tissue source, i.e., by the type of tissue stem were derived. While it can be important to know whether stem cells come from adipose tissue (fat cells) or the umbilical cord, for example, it is equally important to understand the types of stem cells by their capacity to differentiate. In other words, what are the types of stem cells organized by their ability to become different or more mature cells?

One of the most intriguing features of stem cells is their ability to become virtually any other type of cell. We all start out as a sperm and an egg but end up as an exquisitely organized collection of heart cells and brain cells and kidney cells, etc. At each step of the way—from early cells to the adult human body—stem cells become more differentiated and less capable of becoming any other cell. Thinking about them this way, stem cells are grouped into four categories:

  • Omnipotent stem cells
  • Pluripotent stem cells
  • Multipotent stem cells
  • Unipotent stem cells

Omnipotent stem cells

Omnipotent stem cells, also called totipotent stem cells, truly have the capacity to become any other cell. Omnipotent stem cells can become embryonic cells or even the cells that support the embryo, like the placenta. A fertilized egg is an example of an omnipotent cell. While omnipotent/totipotent stem cells are potentially incredibly useful, their use is highly restricted and controversial. As such, they are not usually used for therapeutic purposes, or even for research.

Pluripotent stem cells

Pluripotent stem cells are the next best thing to omnipotent stem cells. Pluripotent stem cells can become nearly any tissue in the body. Like omnipotent stem cells, the use of naturally occurring pluripotent stem cells is also controversial because they require the use of embryos. However, researchers have devised a rather ingenious way to take regular cells and turn them into pluripotent stem cells. These stem cells are referred to as induced pluripotent stem cells or iPSCs. Induced pluripotent stem cells are particularly exciting because of their potential as research tools and clinical therapeutics. Most importantly, iPSCs sidestep controversy because they are made from mature cells.

Multipotent stem cells

Multipotent stem cells can become any number of mature cells. For example, a mesenchymal stem cell can become a muscle cell or fat cell, a bone cell or cartilage cell. Another powerful feature of multipotent stem cells is that they can divide and form other multipotent stem cells. Thus, their ability to differentiate and self-renew makes them incredibly versatile for research and clinical purposes.

Another example of multipotent stem cells is the type of cells that give rise to blood cells, namely hematopoietic stem cells. Hematopoietic stem cells can differentiate into myeloid type or lymphoid type, but once they do, they are restricted to become their corresponding type of blood cell. For example, myeloid cells can become red blood cells or certain white blood cells, while lymphoid cells are more or less destined to become lymphocytes.

Unipotent stem cells

Unipotent stem cells are technically stem cells but have very little potential become anything other than the one cell they were destined to become. For example, a cartilage stem cell is destined to become a cartilage cell, while a bone stem cell is destined to become a bone cell. A mesenchymal stem cell could become either one, but by the time it has differentiated into a cartilage or bone stem cell, its fate is essentially predetermined. As you may expect, unipotent stem cells have limited clinical usefulness.

In summary, as you think about different types of stem cells, it can be important to think about where the stem cell came from (e.g. fat tissue), but also consider its potential for self-renewal and differentiation.

Why is Bone Marrow Stem Cell Therapy Considered Unsafe Intravenously?

Why is Bone Marrow Stem Cell Therapy Considered Unsafe Intravenously?

Stem cells derived from bone marrow, or hematopoietic stem cells, are a topic of significant debate in the medical community. While they have exhibited significant potential for benefiting people with both cancerous and noncancerous diseases including immune deficiencies, not all methods for administering bone marrow are created equal. While intra-articular injections of bone marrow are more common and considered safer, intravenous methods pose serious risks, which are explored here.

Intra-articular injections involve injecting bone marrow directly into the compromised joint, whereas intravenous methods entail infusing bone marrow stem cells into the body through the veins. Intra-articular injections have shown promise in treating conditions such as osteoarthritis (OA) in joints such as the knee and has proven to achieve pain relief for moderate-to-severe cases of osteoarthritis.

Intra-articular treatments are localized, so the injected bone marrow is already in its target location upon being administered. According to research, this form of therapy is generally considered to be safe. In intravenous bone marrow transplants, however, there are serious risks associated with treatment. Bacterial infections are common, while viral and fungal infections can also occur and cause life-threatening conditions, such as organ failure.

Risk factors for developing any complication associated with intravenous bone marrow transplantations vary based on a number of factors, including the patient’s age, genetics, and type of disease being treated. With that said, due to its limited risks, intra-articular bone marrow methods appear to be the safest form of treatment currently available. Although each patient will need to discuss risk factors alongside potential benefits with his or her physician, oftentimes the risks appear to outweigh the potential benefits.

There are alternative therapies with fewer potential side effects which may be explored such as Adipose and Umbilical Cord-derived stem cells. These regenerative medicine treatments not only can treat osteoarthritis and sports-related injury conditions, but have also shown positive results in treating neurological conditions such as Multiple Sclerosis, Parkinson’s disease, Post-Stroke, and Traumatic Brain Injuries (TBI).

New Information on Using Growth Factors for Stem Cell Differentiation

New Information on Using Growth Factors for Stem Cell Differentiation

Using growth factors to help stem cells differentiate into chondrocytes, or cartilage cells has been shown to be an effective way to maintain cartilage tissue. However, there are several different types of growth factors, and little has previously been known about which growth factors may be most beneficial for help stem cells differentiate in a way that supports cartilage.

New research published in Stem Cell Reviews has addressed this issue by looking specifically at how four specific growth factors affect differentiation of mesenchymal stem cells – and particularly – how they affect chondrogenic differentiation. The four growth factors explored in this study were: transforming growth factor beta 1 (TGF-β1), bone morphogenetic protein 2 (BMP2), parathyroid hormone-related protein (PTHrP), and fibroblast growth factor 2 (FGF2).

The scientists used methods of analyzing the levels of growth factors as well as the extent of collagen content on days 16, 23, and 30 after implementing growth factor programs. The results showed that TGF-β1 and BMP-2, when used in combination, increased short-term collagen content and other indicators of well-maintained cartilage. When PTHrP or FGF2 was applied, the overall impact of TGF-β1 and BMP-2 on cartilage tissue was initially decreased. Nonetheless, successive applications of both PTHrP and FGF2 helped to maintain the effects of TGF-β1 and BMP-2.

These results help to clarify the ways in which growth factors can be used to improve the ability of bone marrow derived mesenchymal stem cells to differentiate into cells that are viable for supporting cartilage. The specific outcomes provide critical information that can help with protocols for chondrogenic differentiation of stem cells. Future research will likely build on these findings to help scientists and clinicians better understand the best formulas for how to use growth factors to achieve desired results with stem cells.

What Are the Benefits of Adding PRP to Stem Cell Therapy with Adipose Treatment?

What Are the Benefits of Adding PRP to Stem Cell Therapy with Adipose Treatment?

Adipose treatment is a procedure in which stem cells are derived from a section of the abdomen then used for therapeutic purposes. Adipose-derived stem cells (ADSCs) are less invasive to extract compared to cells derived from other sources, such as bone marrow. In therapeutic applications, adding platelet-rich plasma (PRP) to ADSCs has been shown to have benefits.

What is PRP?

PRP therapy is the process by which a small sample of blood is removed from the patient. The platelets are then separated from other components of the blood via a centrifuge. The isolated platelets are shown to have high levels of diverse growth factors.

Why Are Growth Factors Important?

ADSCs are shown to have reduced proliferative potential. While they do secrete a wide range of growth factors, PRP therapy is coupled with stem cell therapy to maximize their regenerative medicine potential benefits by helping to increase their proliferation and differentiation. PRP essentially empowers the ADSCs, stimulating cell proliferation and cell differentiation when used for regenerative applications.

Which Applications Can the Therapy Be Used for?

Researchers have stated that the therapeutic potential of ADSCs is “enormous,” but by kickstarting the stem cells with PRP, it’s possible that the therapy will unlock even further medicinal possibilities. Anti-inflammatory and anti-apoptotic effects have been demonstrated by ADSCs, and there are many clinical trials which have either been completed or are ongoing to explore the treatment’s effects. Skeletal repair, soft tissue generation, and immune disorders such as Crohn’s disease and multiple sclerosis are just some of the therapeutic targets for this treatment. In specific, using ADSCs with PRP has been shown to aid periodontal tissue engineering, tendon repair, wound healing, and even bone regrowth.

Because the ADSCs are fairly easy to source and blood samples required for PRP are also simple to acquire, combining PRP to adipose stem cell therapy shows promise for delivering a powerful treatment that can address a broad variety of conditions, all with a minimally invasive approach.

Stem Cell Therapy for Neuropathic Pain

Stem Cell Therapy for Neuropathic Pain

Under normal circumstances, pain receptors react to painful stimuli such as burns or lacerations. Pain receptors from the body then send that information along nerves to the brain via electrical signals. Once that electrical information reaches the brain (which happens almost immediately), it is perceived as pain. This type of pain is a nociceptive pain.

Neuropathic pain, however, is different. Neuropathic pain is caused by a condition of the nerves themselves. Patients with neuropathic pain experience chronic pain without any specific injury. Neuropathic pain may be felt as a burning sensation, tingling, or a “pins and needles” sensation, or these combined. Neuropathic pain most often occurs in people with diabetes, certain vitamin deficiencies, and shingles. It may also occur after people receive certain cancer treatments following a stroke.

While it is rather simple to treat pain caused by a burn or laceration (nociceptive pain), it is very difficult to effectively treat neuropathic pain. Standard treatments for neuropathic pain include anti-epilepsy medications such as phenytoin, gabapentin, or carbamazepine and antidepressants such as venlafaxine, duloxetine, or amitriptyline. Usually, these treatments are only modestly effective. Eventually, many patients need powerful opioid medications like morphine and oxycodone to control their pain.

Researchers at the Cleveland Clinic published research that strongly suggests that stem cells may be able to improve those battling neuropathic pain. Dr. Jianguo Cheng and his research group have shown that mesenchymal stem cell transplantation into the spinal fluid can reduce pain and pain sensitivity in an animal model of neuropathic pain. In one series of experiments, they showed that mesenchymal stem cells could relieve pain in rats who had experimental nerve damage. Researchers confirmed the benefit of stem cells for neuropathic pain in several different sets of experiments. The results have been so encouraging that Dr. Cheng and the Cleveland Clinic have applied to patent the technology.

Dr. Cheng’s group also showed intravenously administered mesenchymal stem cells are just as effective as cells administered into the spinal fluid (intrathecally). This is good news for patients since it is less invasive to put stem cells into a vein than it is to infuse them into the cerebrospinal fluid. Amazingly, the research group showed that stem cells injected through either route (vein or spinal fluid) ended up finding their way to damaged nerves where they could provide maximum benefit.

While this work in animals must be performed in humans to confirm the results, this preclinical research establishes a strong foundation for those clinical studies. These results provide hope to those who struggle with daily neuropathic pain.

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our team.

You have Successfully Subscribed!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!