The Science Behind Stem Cell Treatments for Multiple Sclerosis: How It Works and What to Expect

The Science Behind Stem Cell Treatments for Multiple Sclerosis: How It Works and What to Expect

Multiple sclerosis (MS) is a progressive neurological condition that affects millions of people worldwide. As this autoimmune disease disrupts the central nervous system, it leads to symptoms such as muscle weakness, numbness, and cognitive issues. In recent years, stem cell therapy has emerged as a promising treatment to alleviate these symptoms and potentially slow the progression of the disease.

At Stemedix, we recognize the challenges that MS patients face, particularly as the disease advances. We are dedicated to exploring stem cell treatments for multiple sclerosis as a potential solution. Stem cell therapy offers new hope by targeting the underlying causes of MS, especially the destruction of myelin—the protective sheath around nerve fibers. Myelin loss disrupts communication between the brain and the body, contributing to MS symptoms. Stem cells have the unique ability to regenerate damaged tissues, reduce inflammation, and modulate the immune system, which is critical in autoimmune diseases like MS.

Stem cell treatments for multiple sclerosis aim to restore function and slow the disease’s progression. Whether you’re experiencing early warning signs of multiple sclerosis, such as unexplained fatigue, numbness, or vision problems, or have been living with the disease for some time, stem cell therapy could offer a pathway to managing symptoms and improving your quality of life. In this article, we will explore how stem cell therapy for MS works, the scientific mechanisms behind it, and what you can expect from the treatment process. At Stemedix, we’re committed to helping you understand how stem cell treatments can make a difference in your journey with MS.

Stem Cell Therapy: A Game Changer for MS Treatment

Stem cell therapy offers a new approach to treating multiple sclerosis (MS), offering hope for many individuals living with this challenging condition. Understanding stem cells and their unique capabilities is essential in recognizing how stem cell therapy can be a powerful tool in MS treatment.

What Are Stem Cells?

Mesenchymal stem cells (MSC’s) are unique cells with the remarkable ability to transform into different cell types in the body. Known for their regenerative properties, they serve as the building blocks of life. In multiple sclerosis, stem cells can repair damaged tissues, including nerve cells affected by the disease. Unlike other cell types, stem cells are undifferentiated, meaning they can develop into specialized cells, such as those needed to regenerate the myelin sheath—the protective covering around nerve fibers often damaged in MS. While other treatments primarily manage symptoms or inflammation, stem cell therapy works to repair the underlying damage to the nervous system, making it a vital tool in regenerative medicine focused on healing rather than just symptom control.

Specialty Stem Cells in Multiple Sclerosis Treatment

Stem cell therapy for Multiple Sclerosis not only focuses on reducing inflammation but also on regenerating and repairing nerve damage. Certain specialized stem cells play an important role in this process:

Neural Stem Cells (NSCs): These cells have the potential to develop into various types of nerve cells, supporting the repair of damaged neurons and promoting neuroprotection. They may help restore function by replacing lost or injured nerve cells in MS patients.

Oligodendrocyte Precursor Cells (OPCs): Oligodendrocytes are responsible for producing myelin, the protective sheath around nerve fibers that is damaged in MS. Stem cell-derived OPCs aim to restore myelin, improving nerve function and slowing disease progression.

Schwann Cells: While primarily associated with the peripheral nervous system, Schwann cells play a role in myelin regeneration and nerve repair. Their regenerative properties make them an important consideration for supporting neural function in MS patients.

By incorporating these specialized stem cells into treatment strategies, regenerative medicine aims to go beyond symptom management and actively promote nerve repair and functional recovery. Stemedix continues to provide therapies informed by the latest research in stem cell applications for MS.

How Stem Cells Can Help MS Patients

Multiple sclerosis (MS) occurs when the immune system attacks the myelin, disrupting communication between the brain and the body. This leads to symptoms like numbness, muscle weakness, and cognitive challenges. Stem cells have the unique ability to regenerate the myelin sheath, repairing this damage. A key benefit of stem cells is their ability to reduce inflammation, which is central to the ongoing nerve damage in MS. By modulating the immune response, stem cells help control inflammation, providing symptom relief and potentially slowing disease progression. Stem cells may aid in regenerating damaged nerve cells and improving mobility, coordination, and cognitive function, making them a promising treatment option for MS.

At Stemedix, we recognize the challenges that come with MS, and we are committed to providing personalized stem cell treatments designed to address the root causes of the disease. Our goal is to offer a pathway to improved quality of life, aiming to slow the progression of MS and provide patients with the relief they need. If you’re considering stem cell therapy for MS, Stemedix is here to guide you every step of the way.

The Scientific Mechanisms Behind Stem Cell Treatments for MS

Stem cell therapy has become one of the most promising approaches to treating multiple sclerosis (MS). By targeting the underlying causes of the disease, stem cells offer a potential solution for repairing damage to the nervous system and improving overall function. Understanding the scientific mechanisms behind stem cell treatments can provide greater clarity on how these therapies work and why they hold so much potential for MS patients.

How Stem Cells Repair Damaged Myelin

Myelin is the protective covering around nerve fibers in the central nervous system, and its destruction is a key characteristic of multiple sclerosis (MS). When myelin is damaged, nerve signals cannot travel properly, resulting in symptoms like muscle weakness, numbness, and cognitive issues. 

Stem cells can help regenerate myelin by transforming into oligodendrocyte precursor cells (OPCs), which produce new myelin. This regeneration improves nerve signal transmission and enhances overall function. Research, including animal models and early human trials, has shown promising results, with stem cell therapy leading to myelin repair and functional recovery. While still considered an emerging treatment, stem cell therapy’s potential to repair myelin offers hope for reducing MS symptoms and slowing disease progression.

Immune System Regulation

In multiple sclerosis, the immune system erroneously attacks myelin, causing progressive damage. Stem cells can modulate the immune system, reducing its overactive response and preventing further damage to the nervous system. This immune-modulating effect is critical in treating autoimmune conditions like MS. 

Stem cells can reset the immune system by influencing T cells and B cells, which play a key role in attacking myelin. Ongoing research is investigating how stem cells can rebalance this immune response, potentially leading to long-term disease stabilization and fewer relapses. This immune modulation is a key mechanism of stem cell therapy for MS, addressing the disease’s root cause rather than merely managing its symptoms.

Reducing Inflammation and Enhancing Nerve Function

Chronic inflammation is another key feature of multiple sclerosis, contributing to the ongoing destruction of nerve cells and myelin. Stem cells can help combat this inflammation by producing anti-inflammatory cytokines, which are molecules that regulate the immune response. By reducing inflammation, stem cells help prevent further damage to the nervous system and support the body’s healing process.

Additionally, stem cells play a vital role in encouraging the repair of nerve cells and improving communication between the brain and the body. The regeneration of myelin and the reduction of inflammation work together to enhance nerve function, which can lead to improvements in mobility, coordination, cognitive function, and overall quality of life for MS patients.

Stem cell treatments for MS offer a multifaceted approach that addresses the damage caused by the disease, from repairing the myelin sheath to modulating the immune system and reducing inflammation. These scientific mechanisms provide a strong foundation for why stem cell therapy is considered a potential game-changer for those living with multiple sclerosis.

Types of Stem Cell Therapies for MS: Which One is Right for You?

Stem cell therapy is rapidly emerging as a viable option for individuals living with multiple sclerosis (MS). However, there are different types of stem cell therapies, each with unique processes and potential benefits. Understanding the different options available can help you make an informed decision about the treatment that’s best for you.

Autologous Stem Cell Therapy 

Autologous stem cell therapy uses the patient’s own stem cells, offering a highly personalized treatment for multiple sclerosis (MS). The process begins with collecting stem cells from the patient’s bone marrow or blood. These cells are then purified in a laboratory and reintroduced into the body to help regenerate damaged tissues, repair myelin, and modulate the immune system.

A significant benefit of autologous stem cell therapy is the elimination of immune rejection, as the cells are derived from the patient’s own body. This reduces complications associated with foreign tissue. However, challenges include the time-consuming, expensive nature of the process and limited stem cell availability in some patients, especially older individuals. Despite these hurdles, it remains a popular and effective MS treatment.

Allogeneic Stem Cell Therapy 

Allogeneic stem cell therapy uses stem cells from a healthy donor rather than the patient’s own  cells. These donor cells are harvested, processed in a lab, and transplanted into the patient. This approach is helpful when a patient’s stem cells are not viable or when a quicker stem cell replenishment is needed.

One key benefit is the immediate availability of high-quality donor cells that can regenerate tissue, repair myelin, and modulate the immune response in MS patients.

Mesenchymal Stem Cells (MSCs)

Mesenchymal stem cells (MSCs), typically sourced from umbilical cord tissue (UCT), adipose tissue, or bone marrow, hold significant promise for treating multiple sclerosis (MS). These cells are known for reducing inflammation, promoting tissue repair, and aiding in the regeneration of damaged myelin. MSCs also modulate the immune system, addressing the autoimmune response driving MS progression.

MSC therapy has garnered attention for its potential to repair MS-related damage while addressing immune dysfunction. These cells release anti-inflammatory cytokines, alleviating chronic inflammation. Additionally, MSCs may aid in nerve tissue repair, improving mobility and cognitive function. While research is ongoing, early findings suggest MSC therapy could reduce relapses, manage symptoms, and even slow disease progression, enhancing the quality of life for MS patients.

At Stemedix, we offer a range of stem cell treatment options tailored to your individual needs. Our team of experts can help you determine the most suitable approach for managing your MS. We’re committed to providing advanced treatments that allow you to live a better life with MS, and our personalized care guarantees that you receive the best possible outcomes.

What Does the Stem Cell Treatment Process Involve for MS?

Stem cell therapy is an evolving treatment option for multiple sclerosis (MS), offering hope for patients seeking ways to manage their symptoms and slow disease progression. Understanding the stem cell treatment process is essential for anyone considering this approach. Here’s a detailed look at what you can expect throughout the process, from your initial consultation to the post-treatment phase.

Initial Consultation and Patient Evaluation

The initial step in the stem cell treatment process for MS is the consultation with a healthcare provider. During this meeting, the provider will review your medical history, conduct a thorough examination, and evaluate any early warning signs of multiple sclerosis, such as unexplained fatigue, numbness, or vision problems. 

Diagnostic tests, including MRI scans and blood tests, may be recommended to evaluate the extent of myelin damage and inflammation. Based on these results, the provider will discuss different stem cell therapy options. This guarantees a personalized treatment plan that aligns with your medical history and the progression of MS, guiding you toward the most suitable approach.

Stem Cell Collection and Processing

Once the type of stem cell therapy is determined, the next step is stem cell collection. For autologous therapy (using your own cells), stem cells are typically harvested from your bone marrow or adipose (fat tissue). In the case of allogeneic therapy (using donor cells), stem cells are sourced from a carefully screened donor to make sure compatibility.

After collection, the stem cells are processed in a laboratory where they are isolated, purified, and prepared for reintroduction into the body. This step is essential to make sure that the cells are viable and effective. For mesenchymal stem cells (MSCs), special techniques are employed to enhance their ability to repair tissue, reduce inflammation, and regenerate damaged myelin.

Injection and Treatment Procedures

Once the stem cells are prepared, they are reintroduced into your body. Depending on the therapy type, this may be done through an intravenous infusion or direct injections into affected areas, such as the spinal cord or regions with significant nerve damage. This approach targets areas that need repair. 

The treatment duration varies based on the selected therapy and individual patient needs. Some treatments may take a few hours, while others require multiple sessions over weeks or months. Throughout the process, your healthcare provider will closely monitor progress, including improvements in mobility, muscle strength, and cognitive function, and adjust the treatment plan as needed to achieve the best possible outcome.

Tracking Progress and Long-Term Care

After the treatment, regular follow-up appointments are vital for tracking your progress. Your healthcare provider will continue to monitor your response to stem cell therapy, which may include conducting tests to evaluate changes in symptoms and overall function. This allows for adjustments to the treatment plan as necessary to guarantee continued progress in managing MS.

At Stemedix, we understand that each patient’s journey with multiple sclerosis is unique. Our experienced team is committed to providing personalized care throughout every stage of the stem cell therapy process. We work closely with you to get the best possible outcome and offer ongoing support as you traverse the challenges of living with MS.

Stem cell therapy offers a promising path forward for many people with multiple sclerosis. By partnering with healthcare providers who specialize in these advanced treatments, you can explore the potential benefits and make informed decisions about your health and well-being.

Why Choose Stemedix for Stem Cell Therapy for MS?

When considering stem cell treatments for multiple sclerosis (MS), selecting the right provider is very important to ensuring the best possible outcomes. At Stemedix, we specialize in offering advanced regenerative treatments that are personalized to each patient’s specific needs. Our commitment to delivering exceptional care and effective stem cell therapies for MS is backed by years of expertise in treating neurodegenerative diseases, including multiple sclerosis.

Expertise in Stem Cell Treatments

At Stemedix, we have a proven track record of success in treating multiple sclerosis and other neurodegenerative conditions with stem cell therapy for MS. Our team brings extensive experience and knowledge to each treatment plan, ensuring that you receive the most effective care for your unique situation.

What sets us apart is our ability to combine scientific advancements with personalized care. We understand that MS affects each individual differently, which is why we tailor our treatment plans to address your specific symptoms, disease progression, and overall health. Our specialists are well-versed in the latest stem cell therapies, including autologous and allogeneic stem cell options. They will work closely with you to choose the most appropriate therapy for your needs.

Supportive Care Throughout the Treatment Process

Going through the complexities of MS and stem cell therapy can be overwhelming, but with Stemedix, you’ll never feel alone. From the moment you reach out for a consultation, our team of care coordinators will be there to support you every step of the way. Whether you need assistance with scheduling, understanding the treatment process, or managing the emotional aspects of your journey, we are here to make sure that you feel informed, comfortable, and confident throughout your experience.

We offer continuous support before, during, and after your stem cell treatment. This is especially important for MS patients, who may need additional assistance to track progress and manage any challenges during recovery. Our care coordinators are dedicated to guiding you through the process, offering consistent follow-up, and making sure that you feel empowered in your healthcare decisions.

Stemedix: A New Hope for Patients with MS

Stem cell therapy has emerged as a promising treatment option for multiple sclerosis (MS), offering hope to those living with this challenging condition. As we’ve discussed, stem cells have the potential to repair the damage caused by MS, particularly by regenerating myelin, reducing inflammation, and modulating the immune system. Unlike traditional treatments, stem cell therapy addresses the underlying causes of MS, which can lead to more effective management of symptoms. By stimulating the body’s natural regenerative processes, stem cells may help improve nerve function and slow the disease’s progression. If you’ve noticed early warning signs of multiple sclerosis, such as unexplained fatigue, numbness, or vision problems, stem cell therapy could offer a potential solution.

For MS patients, stem cell therapy can offer significant benefits, including better mobility, improved cognitive function, and enhanced overall quality of life. Though research continues to evolve, the results so far suggest that stem cell therapy could be a valuable tool for managing MS symptoms more effectively. If you’re living with MS and want to explore new treatment options, stem cell therapy could be the solution you’ve been searching for. At Stemedix, based in Saint Petersburg, FL, we offer personalized care and advanced stem cell treatments designed to help you manage your MS symptoms and improve your quality of life. Our team is here to support you from the initial consultation to post-treatment care. 

Contact Stemedix today at (727) 456-8968 or email us at yourjourney@stemedix.com  to schedule your consultation. Let us help you discover how stem cell therapy can make a difference in your journey with MS.

Exploring Stem Cell Therapy for Progressive Multiple Sclerosis

Exploring Stem Cell Therapy for Progressive Multiple Sclerosis

Progressive multiple sclerosis (PMS) is a complex, disabling form of multiple sclerosis characterized by the progressive accumulation of central nervous system (CNS) damage. This damage arises from chronic inflammation, demyelination, axonal injury, neuronal degeneration, and gliosis, affecting both white and gray matter in the brain and spinal cord. Despite advancements in MS research, effective reparative therapies for reversing the functional impairments associated with PMS remain largely unavailable.

A promising new approach for PMS treatment is NurOwn, a therapy based on mesenchymal stem cell-derived neurotrophic factor (MSC-NTF) cells. NurOwn utilizes a proprietary method to isolate and culture autologous (self-derived) mesenchymal stem cells (MSCs) from bone marrow. These MSCs are then differentiated to secrete high levels of neurotrophic factors (NTFs), which are believed to have both neuroprotective and immunomodulatory properties. Preclinical studies and early clinical trials have suggested that MSC-NTF therapy could help reduce CNS inflammation and promote neuronal repair mechanisms in PMS patients.

Cohen et al.’s open-label phase II study was conducted to evaluate safety/efficacy of three intrathecal cell treatments

Safety and Tolerability of MSC-NTF Therapy

In this Phase II clinical trial (BCT-101), the safety of MSC-NTF therapy was evaluated in 20 participants with PMS, of whom 18 received treatment. While most participants tolerated the therapy well, two discontinued due to adverse events related to the procedure, including mild symptoms such as coldness, muscle weakness, and fever, as well as one case of arachnoiditis -a rare inflammation of the arachnoid membrane surrounding the spinal cord. 

For both affected individuals, MRI scans revealed characteristic lumbar nerve root clumping. Treatment with epidural cortisone and analgesics provided symptom relief, with one participant’s symptoms resolving fully. Importantly, there were no recorded deaths or adverse events associated with MS relapses, and no clinically significant alterations were observed in blood, urinalysis, or vital sign parameters after dosing. 

According to the authors, these results highlight the potential tolerability of MSC-NTF therapy, though further studies are required to assess long-term safety.

Potential of MSC-NTF Therapy for PMS

NurOwn’s MSC-NTF cells have been tested in animal models relevant to PMS, including studies on autoimmune encephalomyelitis and optic nerve damage, which have shown the therapy’s potential to reduce inflammation and support neuroprotective mechanisms. 

Current studies suggest that intrathecal (spinal) administration may offer unique benefits over intravenous administration by directly addressing meningeal inflammation and delivering neurotrophic factors close to the site of CNS damage. The capability of MSC-NTF cells to modulate inflammation and potentially promote endogenous repair makes it a promising therapeutic modality in PMS.

Functional and Biomarker Outcomes

Cohen et al.’s phase II study used several functional outcomes to assess MSC-NTF efficacy in PMS, including the timed 25-foot walk test (T25FW), nine-hole peg test (9-HPT), low-contrast letter acuity (LCLA), and symbol digit modalities test (SDMT). 

Results indicated positive trends in these measures, suggesting that MSC-NTF therapy could improve mobility, hand function, and cognitive speed in PMS patients. Additionally, patient-reported outcomes, such as the MS Walking Scale-12 (MSWS-12), demonstrated improvements in walking function.

Biomarker analysis revealed reductions in cerebrospinal fluid (CSF) inflammatory markers, including MCP-1, sCD27, SDF-1, and osteopontin, indicating a decrease in CNS inflammation. Neuroprotective biomarkers, such as VEGF-A, HGF, NCAM1, and LIF, also showed consistent increases, suggesting that MSC-NTF cells might help support neuronal health and function in PMS. However, changes in neurodegenerative biomarkers, such as neurofilament light chain (NfL), were inconsistent, indicating the need for additional research to understand MSC-NTF’s impact on neuronal damage markers.

Insights and Future Directions Of MSC-NTF Therapy for PMS

This open-label, single-arm Phase II study demonstrated that MSC-NTF cells could be safely administered in participants with stable, non-relapsing PMS. Although two participants experienced arachnoiditis following intrathecal treatment, the majority tolerated the therapy well. Functional outcomes showed encouraging trends, suggesting possible benefits of MSC-NTF therapy in improving physical and cognitive function in PMS patients.

The study also highlighted several limitations, including the lack of a placebo-controlled group, which may introduce bias in interpreting efficacy results, and limitations in biomarker analysis due to sample timing. Additionally, inconsistent changes in neurodegenerative biomarkers and the small sample size warrant further investigation.

In summary, this Phase II trial provides preliminary evidence supporting the safety and potential therapeutic benefits of MSC-NTF cell therapy in PMS. While these initial findings are promising, larger placebo-controlled studies are needed to confirm efficacy and further elucidate the role of MSC-NTF cells in modulating CNS inflammation and promoting neuroprotection in PMS.

Source: Cohen JA, Lublin FD, Lock C, et al. Evaluation of neurotrophic factor secreting mesenchymal stem cells in progressive multiple sclerosis. Multiple Sclerosis Journal. 2023;29(1):92-106. doi:10.1177/13524585221122156

Evaluating Stem Cell Therapy for Degenerative Disc Disease and Low Back Pain

Evaluating Stem Cell Therapy for Degenerative Disc Disease and Low Back Pain

Back pain is the most common cause of disability worldwide, impacting people of all ages and socioeconomic backgrounds. In North America, it is one of the top reasons people miss work and visit doctors. Studies show that at least 80% of Americans will experience low back pain at some point in their lives, making it a major contributor to healthcare costs and lost income, amounting to over $50 billion each year. Although various factors can cause back pain, most cases are mechanical rather than due to an underlying disease. One of the main sources of chronic back pain is the degeneration of intervertebral discs, which can lead to pain in the lower back and neck. Despite its prevalence, there is no standard treatment that effectively restores the normal function of these degenerated discs.

Understanding Disc Degeneration and Back Pain

Degenerative disc disease is one of the most significant contributors to chronic low back pain. As intervertebral discs age or become damaged, they lose their ability to cushion the spine, causing pain and reduced mobility. Degeneration can occur naturally due to aging, but other factors like injury or genetic predisposition can also accelerate the process. While imaging tests such as MRIs can identify disc degeneration, they don’t always pinpoint the exact cause of the pain. This makes treating degenerative disc disease challenging, as doctors struggle to find therapies that not only alleviate pain but also restore disc health.

Emerging Stem Cell Therapies for Back Pain

Recently, regenerative medicine, particularly stem cell therapy, has gained attention as a potential treatment for degenerative disc disease. Stem cells have the ability to transform into different types of cells, making them suitable for repairing damaged tissues. In theory, injecting stem cells into degenerated discs could help regenerate disc tissue and reduce pain.

Overview of Clinical Studies

Several clinical studies have examined the potential of stem cell therapies for treating degenerative disc disease, with mixed results. The types of stem cells studied include:

  • Autologous mesenchymal stem cells (MSCs): These are derived from a patient’s own body, often from bone marrow or fat tissue. Some studies reported a reduction in pain and improvement in quality of life following treatment with MSCs. However, results were inconsistent, and improvements did not always correspond to measurable changes in the disc’s structure.
  • Allogenic stem cells: These are stem cells from donors’ umbilical cord tissue. Research on allogenic stem cells is still limited, with few studies showing significant long-term benefits.
  • Chondrocytes: These cells, which produce cartilage, have also been used in some studies to promote disc regeneration. However, there is limited evidence supporting their use, and more research is needed.

Overall, the studies reviewed had varying degrees of success, with some patients experiencing significant pain relief and others seeing little to no improvement. Many studies lacked control groups or were not randomized, making it difficult to draw definitive conclusions. The most common outcomes measured were pain scores and functional improvements, but there was no clear evidence that stem cell therapy restored the physical structure of degenerated discs.

How Stem Cells Might Work

There are several theories about how stem cells could help regenerate damaged discs. One possibility is that stem cells differentiate into the type of cells needed to repair the disc, such as cells that produce cartilage or other supportive tissues. Another theory is that stem cells create a supportive environment that encourages the body’s own repair mechanisms. For example, animal studies have shown that stem cells can increase the production of molecules that help repair and strengthen disc tissue.

The Future of Stem Cell Therapy for Back Pain

Soufi et al. report that stem cell therapy remains a promising area of research for treating degenerative disc disease. Ongoing clinical trials aim to establish the safety and effectiveness of these treatments in humans, and if successful, could pave the way for a new approach to managing chronic back pain. For stem cell therapy to become a standard treatment, more studies are needed to identify which patients are most likely to benefit and to optimize treatment protocols, including the type and dosage of stem cells.

Researchers are also exploring the use of tissue-engineering technologies and biomaterials to enhance the effectiveness of stem cell therapies. Combining stem cells with supportive scaffolds could improve the chances of successful disc regeneration and provide a more stable environment for cell growth.

The Potential of Stem Cell Therapy for Degenerative Disc Disease and Back Pain

Back pain, particularly when related to degenerative disc disease, is a significant health issue with limited effective treatment options. Stem cell therapy represents a new frontier in regenerative medicine, with the potential to offer relief to patients who have not responded to traditional therapies.

Source: Soufi, K.H.; Castillo, J.A.; Rogdriguez, F.Y.; DeMesa, C.J.; Ebinu, J.O. Potential Role for Stem Cell Regenerative Therapy as a Treatment for Degenerative Disc Disease and Low Back Pain: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 8893. https://doi.org/10.3390/ijms24108893

Clinical Application of Mesenchymal Stem Cells in Autoimmune Conditions

Clinical Application of Mesenchymal Stem Cells in Autoimmune Conditions

The onset of autoimmune diseases is related to unbalanced immune homeostasis and leads to the injury and failure of several organ specific tissues. Currently estimated to affect 8-10% of the population, these autoimmune diseases are associated with serious impairment, high mortality rate, and significant medical costs.

The discovery of stem cells, and specifically mesenchymal stem cells (MSCs), has created new opportunities for accelerating tissue regeneration. MSCs possess the ability to self-renew and differentiate into a wide range of cell types that fill a critical role in immunomodulation and regenerative therapy.  

In this review, Jasim et al. share the latest research on the efficiency and feasibility of MSCs in the clinical treatment of several autoimmune disorders including rheumatoid arthritis, type 1 diabetes, multiple sclerosis, systemic lupus erythematosus, inflammatory bowel disease, liver disease, and Sjogren’s syndrome. 

To date, most of these autoimmune disorders have been treated with a number of conventional drugs, including non-steroidal anti-inflammatory drugs. However, with many of these conditions, these drugs have been observed to contribute to liver injury, gastrointestinal injury, kidney side effects, BM suppression, and psychological disorders, making the development of new and safe therapeutic approaches an important issue. This has led to significant interest in exploring the potential benefits of MSC therapy in treating autoimmune diseases.

MSCs are easily collected from a variety of sources, including umbilical cord (UC), Wharton’s jelly (WJ), adipose tissue, bone marrow (BM), teeth and menstrual fluid. Research has demonstrated that MSCs regulate their local environment, cellular communications, and the release of several factors. MSCs are also able to migrate and differentiate into damaged tissue and can release growth factors, cytokines, and chemokines, which assists in improving tissue regeneration. 

The research evaluated by the authors as part of this review, coupled with MSC’s high proliferation ability, multipotent differentiation capacity, anti-inflammatory and immunomodulatory properties, and regenerative potential, led to the conclusion that there was no remarkable association between mesenchymal stem cell therapy (MSCT) and tumor and infection with the treatment determined to be safe and feasible. 

Jasim et al. also concluded that there is still a lack of understanding of the specific mechanisms through which the MSCT ameliorates these various autoimmune diseases that must be addressed as a way to enhance the future clinical use of MSCs.

Source: Jasim SA, Yumashev AV, Abdelbasset WK, et al. Shining the light on clinical application of mesenchymal stem cell therapy in autoimmune diseases. Stem Cell Res Ther. 2022;13(1):101. Published 2022 Mar 7. doi:10.1186/s13287-022-02782-7

Chondrocyte and Mesenchymal Stem Cell-Based Therapies to Help Manage in Osteoarthritis and Other Orthopedic Conditions 

Chondrocyte and Mesenchymal Stem Cell-Based Therapies to Help Manage in Osteoarthritis and Other Orthopedic Conditions 

Osteoarthritis (OA) continues to be the most common form of degenerative joint disease in the United States and around the world. 

According to the World Health Organization (WHO), 528 million people worldwide were living with osteoarthritis (OA) in 2019, which is an increase of 113% since 1990. The Global Burden of Disease Study 2021 found that 595 million people had OA in 2020, which is 7.6% of the global population. The Centers for Disease Control and Prevention (CDC) estimates that over 32.5 million adults in the U.S. currently live with OA.

Despite the tremendous increase in the global incidence of OA, there are no effective pharmaceutical therapies that are able to restore the original structure and function of damaged articular cartilage.

Considering this, cell-based therapies for OA and other orthopedic disorders have become a primary area of current research and development.

In this review, Mobasheri et al. focus on the structure and function of articular cartilage, the pathogenesis of OA, and explore the challenges associated with cartilage repair and regeneration using cell-based therapies that utilize chondrocytes and mesenchymal stem cells (MSCs).

Articular cartilage (AC) has demonstrated a very poor ability to repair and regenerate. Being largely avascular and containing no blood vessels, AC lacks the blood flow required in the biological repair response process.  

Overtime, and with age, cartilage loses its already limited capacity for repair and damaged cartilage is typically replaced by fibrocartilage-like scar tissue. With no successful surgical technique demonstrating success in stimulating AC repair and regeneration, autologous chondrocyte implantation (ACI) has emerged as one of the most widely used cell-based repair strategies for articular cartilage. Performed on over 12,000 patients worldwide, ACI has encouraged the growth of durable cartilage-like tissue and demonstrated the ability to significantly reduce pain in patients.

Recent studies have also demonstrated that the immunomodulatory properties of MSCs are able to be exploited for the treatment of many inflammatory and rheumatic conditions, including OA. Specifically, the ability of MSCs to migrate to the site of an injury, induce peripheral tolerance, and inhibit the release of pro-inflammatory cytokines has been observed to promote tissue repair and the survival of damaged cells.  

Considering these advances, Mobasheri et al. report that tissue engineering with chondrocytes and MSCs is now considered to be a promising way of repairing articular cartilage lesions. While there is significant evidence of the potential of these cell-based therapeutic treatment options, the authors also point out fundamental weaknesses associated with the models available to date.

Included among these weaknesses is the fact that none of the engineered tissue currently available possess the normal zonal organization of chondrocytes observed in vitro and considered to be the prerequisite for normal cartilage function and for the success of any future clinical application.

While there are still weaknesses associated with tissue utilizing engineering and cell-based therapies to repair cartilage in OA and other orthopedic conditions that require further research, the authors conclude that these emerging therapeutic options hold tremendous promise for managing OA in the future.

Source: Ali Mobasheri, Gauthaman Kalamegam, Giuseppe Musumeci, Mark E. Batt,

Chondrocyte and mesenchymal stem cell-based therapies for cartilage repair in osteoarthritis and related orthopaedic conditions, Maturitas,Volume 78, Issue 3, 2014, Pages 188-198, ISSN 0378-5122.

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our team.

You have Successfully Subscribed!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!