Please note we will be closed 12-24-25 to 01-02-26 for the holidays. We will resume normal operations on January 5th.
Are There Benefits to Fasting Before Stem Cell Therapy?

Are There Benefits to Fasting Before Stem Cell Therapy?

Stem cell therapy is used for a broad range of applications, including the treatment of injuries and chronic conditions. Before undergoing this form of therapy, many patients are naturally inclined to explore any possibilities which could enhance the effectiveness of treatment. One option which is sometimes posed to patients is voluntary fasting – but is there really any benefit to fasting prior to stem cell treatment?

What the Research Says

In May of 2018, MIT biologists announced that they’d made a groundbreaking discovery: according to their research, it appeared that fasting could boost stem cells’ regenerative capacity. In an animal study, fasting spurred cells to break down fatty acids instead of glucose, which stimulates stem cells to become more regenerative.

Yet, the evidence only showed the metabolic switch taking place in the intestinal stem cells. After mice fasted for 24 hours, the researchers removed intestinal stem cells and grew them, finding that the fasting doubled the cells’ regenerative capacity.

Unfortunately, while this finding could hold value for patients recovering from gastrointestinal infections or other conditions affecting the intestine, as of yet, there is no concrete evidence which suggests it could benefit patients receiving stem cell therapy for other conditions. For instance, someone who is undergoing stem cell therapy to treat a musculoskeletal injury may likely yield no benefit from fasting, as the enhanced regenerative effects have only been observed in intestinal cells.

Further Studies Are Needed

Aside from the study’s limited scope, the research leader himself also indicated that the findings are still too narrow for drawing concrete conclusions. When interviewed for a publication in Medium, senior author of the study and assistant professor of biology, Omer Yilmaz, said that while stem cells do indeed use fat for energy to improve function, “the next step is to work to understand why that is.” He also added that “with these types of interventions, there’s never one simple answer.”

For now, there appears to be too much uncertainty to recommend fasting prior to stem cell therapy. Because these findings have not been observed in any humans, and those that have been observed were concentrated to intestinal cells, anyone who is receiving stem cell therapy can consider that eating beforehand is possibly unlikely to play any role in altering the results of their treatment.

Fact or Fiction: Stem Cells in Aesthetic Surgery

Fact or Fiction: Stem Cells in Aesthetic Surgery

The effects of aging can present themselves in various ways. Sagging, discolored skin, wrinkles, and a loss of fullness and vibrancy around the face and neck are all signs of aging. These obvious signs of aging are partially caused by aging stem cells in the skin. When we are young, the stem cells in our skin are highly active and contribute to healthy, radiant skin. As stem cells age, however, they produce less and less of the substances that help keep the cells around them plump and healthy. Likewise, old stem cells only have a limited ability to become fully functioning adult cells. For these reasons, dermatologists, plastic surgeons, and other professionals in the aesthetics industry look to stem cell therapy as a way to combat the effects of aging on the skin and its appearance.

Many will claim that stem cells do have the potential to rejuvenate skin and slow or even reverse the signs of aging, but sadly, it is difficult for most consumers to tell the difference between the products that just claim to provide stem cell therapy and those that actually deliver it. Some advertisements seem very medically sophisticated. Ideally, however, prospective patients and clients should seek treatment from board-certified physicians who provide treatments using one’s own stem cells (adipose) or from umbilical cord-derived tissues that are carefully screened and regulated.

In summary, stem cells could have an enormous benefit for people who want to slow or reverse the signs of aging. However, some, if not most, commercially available anti-aging stem cell therapies are not currently able to deliver the results they claim. It is important for patients to look for reputable, board-certified providers who are using state-of-the-art technologies in clean, regulated facilities.

 

Reference: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4447486/

Mesenchymal Stem Cells Improves Liver Function in Liver Failure

Mesenchymal Stem Cells Improves Liver Function in Liver Failure

Liver failure is a serious, potentially fatal condition in which large swaths of liver cells become dysfunctional and die. Liver failure is the result of several conditions including chronic alcohol consumption, exposure to drugs that are toxic to the liver (e.g. acetaminophen), autoimmune diseases, or infections such as hepatitis C. Liver failure causes several metabolic abnormalities including dangerously low levels of sodium, potassium, and phosphate in the blood. Moreover, four in 10 people with liver failure have trouble regulating their blood glucose levels, which can cause profound hypoglycemia. Since the liver detoxifies the blood, when the liver fails, patients can experience confusion from excessive amounts of ammonia and other substances in the blood. Seizures are also possible.

Short of liver transplantation, there are very few treatments for liver failure. Most treatments focus on restoring sodium, potassium, phosphate, and glucose levels in the blood, and bringing down ammonia levels. Fortunately, experiments show that human mesenchymal stem cells may be a promising treatment for liver failure.

Researchers enrolled 43 people with acute-on-chronic liver failure caused by hepatitis B infection. In this group, 24 patients were treated with mesenchymal stem cells derived from human umbilical cord and 19 patients received a saline solution. The groups received stem cells or placebo, respectively, three times every four weeks. Patients treated with mesenchymal stem cells showed better measures of liver function than those who received placebo. Livers of the patients treated with stem cells produced much more protein, albumin, and clotting factors, and were better able to process bilirubin. Importantly, no significant side effects were observed during the trial.

Given the serious nature of liver failure and the lack of effective treatments (besides liver transplant), this research is incredibly exciting. It offers hope that through further research scientists will be able to use mesenchymal stem cells to change the outcomes of people with acute-on-chronic liver failure.

 

Reference: https://stemcellsjournals.onlinelibrary.wiley.com/doi/abs/10.5966/sctm.2012-0034

Can Hyaluronic Acid Help You Manage Osteoarthritis?

Can Hyaluronic Acid Help You Manage Osteoarthritis?

Hyaluronic acid is a naturally-occurring lubricant made by the body to help cushion joints and support a free range of motion. This lubricant can thin over time, resulting from conditions such as injury, obesity, and even natural aging. It manifests as osteoarthritis (OA), also known as degenerative joint disease. While treatment such as physical activity, maintaining a healthy weight, and improving joint mobility through physical or occupational therapy may help, there is no cure for osteoarthritis. Many patients take over-the-counter painkillers to manage discomfort, but in some cases, pain simply doesn’t respond to drugs. In such cases, physicians may recommend hyaluronic acid injections.

Targeted hyaluronic injections, also called viscosupplementation, have been used specifically for OA in the knee and can add to the joint’s existing supply of the lubricant. These minimally-invasive treatments are an attractive alternative for patients who aren’t ready for knee replacement surgery but have not been able to control symptoms through other therapies.

While hyaluronic injections reportedly work well in certain patients, they may be less effective in elderly individuals and those with severe OA. With that said, 30% of people who received the injections were completely pain-free, with results lasting up to two years. For any patient seeking to delay or avoid knee surgery, treatment offered with these and other alternative options are likely worth exploring.

Scientists Have Discovered Skeletal Stem Cells in Humans

Scientists Have Discovered Skeletal Stem Cells in Humans

The human skeleton is made up of bone, cartilage, fat, nerves, blood vessels, and bone marrow. While the skeleton is usually strong and vibrant in youth, it changes considerably with age. Many people, especially women, experience demineralization of bone called osteoporosis. Most of us will suffer from painful, stiff, arthritic joints either from osteoarthritis or rheumatoid arthritis or both. While some of the diseases of bone and joints have specific treatments, none of them helps to restore bone and joints to their younger state. If one could reintroduce skeletal stem cells into the body, that could all change. Excitingly, researchers have recently isolated human skeletal stem cells from bone and other tissues.

At first glance, this breakthrough may not seem so surprising. One might wonder: didn’t we already have stem cells that form bone and cartilage? The answer is yes, but with an important caveat. Before researchers recently isolated human skeletal stem cells, the only stem cells that could be used to produce bone and cartilage were rather unpredictable. In addition to bone and cartilage, the mesenchymal stem cells that have been long used to form these tissues could also produce fat, muscle, fiberglass, blood vessel cells, and other tissues. In other words, the stem cells were broadly multipotent and, by extension, could not easily be used for a specific purpose, like mending bone or repairing an arthritic joint. That is why the recent discovery of these particular skeletal stem cells is so important.

The researchers isolated skeletal stem cells from various human tissues, mainly bone. They then used the skeletal stem cells to regrow bone and/or cartilage. Not only did the stem cells produce bone and cartilage in the first animal they tested, but they could retrieve stem cells from that animal and then cause bone to regrow in a second animal. This means that the skeletal stem cells have the capability of reproducing themselves.

The same researchers also discovered that when a skeleton is injured, such as in a bone fracture, the number of skeletal stem cells in that area increases dramatically. This makes sense since these cells are used to repair and regrow bone. It is also a promising result because it suggests that stem cells could be used to accelerate bone and joint healing in humans.

Scientists not directly involved in this research heralded this finding as “an extremely important advance.” However, they also acknowledge that more work needs to be done before skeletal stem cells can be routinely used in patients with orthopedic conditions. Nevertheless, these results are an exciting development in the field of stem cell research and orthopedics.

 

Reference: https://www.sciencenews.org/article/humans-have-skeletal-stem-cells-help-bones-and-cartilage-grow

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our team.

You have Successfully Subscribed!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!