Neural Stem Cell Therapy: A Breakthrough in Treating Neurodegenerative Diseases

Neural Stem Cell Therapy: A Breakthrough in Treating Neurodegenerative Diseases

Neurodegenerative diseases are a group of disorders that progressively impair the nervous system, leading to symptoms such as memory loss, movement difficulties, and other disabilities. These conditions result from damage to neurons, the cells responsible for transmitting information within the brain and throughout the nervous system. 

Some of the most common neurodegenerative diseases include Alzheimer’s disease, which affects memory, thinking, and behavior; Parkinson’s disease, which causes movement problems like tremors and rigidity; Huntington’s disease, which leads to a loss of motor control and cognitive decline; multiple sclerosis (MS), which involves damage to the protective covering of nerve fibers; and amyotrophic lateral sclerosis (ALS), which gradually destroys motor neurons, resulting in muscle weakness and paralysis. 

Although these diseases have distinct symptoms, they share common features, such as neuron damage and inflammation. Currently, treatment options are limited, primarily focused on slowing the progression of these conditions rather than providing a cure.

What is Neural Stem Cell Therapy?

Neural Stem Cell Therapy is an innovative approach that uses stem cells to repair or replace damaged neurons. Stem cells have unique properties, including the ability to renew themselves and transform into various cell types. Neural stem cells are a specific type that can become different types of brain cells, such as neurons or supportive glial cells. This therapy has shown promise in laboratory and clinical settings, as it potentially offers a way to rebuild lost connections in the brain and restore function.

Key Benefits of Neural Stem Cell Therapy in Neurodegenerative Diseases

Research has shown that Neural Stem Cell Therapy could provide three primary benefits for neurodegenerative diseases:

  • Reducing Inflammation – Stem cells help to calm down inflammation in the brain, a key contributor to the damage seen in diseases like MS and Alzheimer’s.
  • Promoting Neuron Regeneration – Stem cells can grow into new neurons, replacing the ones damaged by disease.
  • Improving Functional Recovery – By repairing lost connections, this therapy has the potential to restore some lost functions, such as memory and movement control.

How Neural Stem Cell Therapy Works in Specific Diseases

Alzheimer’s Disease

Alzheimer’s disease is characterized by a buildup of amyloid plaques and neurofibrillary tangles in the brain, which disrupt normal communication between neurons and lead to memory and cognitive decline. Research into Neural Stem Cell Therapy has shown encouraging results in this area:

  • Reducing Plaque Formation – Studies indicate that Neural Stem Cell Therapy may reduce amyloid plaques, which are toxic to brain cells.
  • Improving Cognitive Function – Clinical trials suggest that patients who receive this therapy show improvements in memory and thinking, possibly due to restored neuron function.

Parkinson’s Disease

In Parkinson’s, there is a progressive loss of dopamine-producing neurons, which leads to motor symptoms like tremors and stiffness. Neural Stem Cell Therapy may help by:

  • Replacing Lost Dopaminergic Neurons – Stem cells can be encouraged to turn into dopamine-producing cells, helping restore dopamine levels in the brain.
  • Improving Motor Function – Early research shows that patients experience improved movement control after receiving stem cell treatments.

Multiple Sclerosis

Multiple sclerosis is an autoimmune disease where the immune system attacks the protective covering of nerve fibers, leading to damage and inflammation. Neural Stem Cell Therapy may aid MS patients by:

  • Remyelinating Damaged Axons – Stem cells can develop into the type of cells needed to replace the protective myelin sheath around nerves, improving nerve function.
  • Reducing Inflammation – The therapy helps decrease the inflammatory response that worsens nerve damage in MS patients.

The Potential Impact of Neural Stem Cell Therapy

Despite the challenges, the progress made so far in Neural Stem Cell Therapy holds tremendous potential. Continued research and clinical trials may lead to breakthrough treatments that could transform the management of neurodegenerative diseases. If successful, Neural Stem Cell Therapy could offer a way to restore function, improve quality of life, and provide new hope for millions worldwide who suffer from these debilitating conditions.

As research advances, the field of Neural Stem Cell Therapy is likely to evolve, hopefully leading to accessible, effective, and safe treatments that directly address the underlying causes of neurodegenerative diseases. This therapy represents a major step forward in regenerative medicine, with the potential to change how we approach treatment for these complex and life-altering disorders.

Source: Gholamzad, A., Sadeghi, H., Azizabadi Farahani, M., Faraji, A., Rostami, M., Khonche, S., Kamrani, S., Khatibi, M., Moeini, O., Hosseini, S. A., Nourikhani, M., & Gholamzad, M. (2023). Neural Stem Cell Therapies: Promising Treatments for Neurodegenerative Diseases. Neurology Letters, 2(2), 55-68. doi: 10.61186/nl.2.2.55

Mesenchymal Stem Cell-Derived Neural Progenitors in Progressive MS

Mesenchymal Stem Cell-Derived Neural Progenitors in Progressive MS

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) that can take different forms: relapsing-remitting (RRMS), secondary progressive (SPMS), and primary progressive (PPMS). In RRMS, symptoms flare up and then ease, largely due to inflammation, and there are many therapies to manage these relapses. In SPMS and PPMS, the disease gradually progresses without relapses, leading to accumulating disability. Treatments for these progressive forms are limited, and the therapies available are generally less effective than for RRMS.

In this study, Harris et al. explores the use of stem cell-based treatment, specifically mesenchymal stem cell-derived neural progenitors (MSC-NPs), for people with progressive MS. 

MSC-NPs are cells derived from a patient’s own bone marrow and have potential regenerative and immune-modulating effects. Early research suggests that MSC-NPs can provide beneficial effects in animal models of MS. 

This clinical trial was initiated to test the safety and early efficacy of MSC-NPs when injected directly into the spinal fluid of patients with progressive MS. Specifically, Harris et al. wanted to see if these patients would experience fewer or slower disease-related declines after receiving repeated injections of MSC-NPs. 

Evaluating Safety and Early Efficacy Trends

According to the authors, this study found that repeated injections of MSC-NPs were generally safe. Over the two-year follow-up period, no serious side effects were reported by any of the patients. A minor headache was reported by one patient, which did not require treatment, and some other minor issues were reported but were deemed unrelated to the study treatment. 

This confirms the long-term safety of MSC-NPs, which is critical as cell therapies become more widely tested for neurological diseases like MS.

While Harris et al.’s study was not designed to determine whether MSC-NPs were definitively effective, some additional trends were observed:

  • Patients with lower levels of disability at the start of the study tended to show more improvement in their mobility and overall functioning than those with higher disability scores.
  • Most patients who benefited were those who could still walk when they started the trial, suggesting MSC-NP therapy might be more effective in people with less advanced disability.
  • Of the three patients with primary progressive MS, two showed stable disability scores over the two years following treatment. However, the sample size was too small to draw firm conclusions on its effects in PPMS compared to SPMS.

While these findings are promising, the study has significant limitations. With only 20 patients, the study was too small to determine definitive efficacy, so a larger, placebo-controlled trial is necessary to confirm any potential benefits of MSC-NPs. 

Additionally, the open-label design, where both patients and researchers knew who was receiving the treatment, could mean that some effects may have resulted from a placebo response rather than the treatment itself. Furthermore, the therapy may be more effective for patients with lower disability scores, but more research is required to identify which patients are the most suitable candidates for MSC-NP treatment.

Future Directions for MSC-NP Therapy in Progressive MS

Harris et al.’s study has laid the groundwork for further research by establishing MSC-NPs as a safe treatment option over a two-year period. Based on these findings, a larger Phase II trial is underway, involving 50 patients who will receive MSC-NP injections or a placebo over an extended period. This trial will be double-blinded (neither patients nor researchers will know who is receiving the treatment) to give more definitive answers about MSC-NP’s effects on progressive MS.

In summary, MSC-NPs appear to be a safe treatment option for people with progressive MS, with some early evidence suggesting potential benefits in reducing disability for those with less advanced disease. These findings contribute to the understanding of cell-based therapies in MS and support further exploration of MSC-NPs in larger, controlled studies. While MSC-NPs offer hope for future therapies, the authors call for more rigorous research to clarify their impact on long-term disease progression and patient quality of life.

Source:  Harris VK, Stark JW, Yang S, Zanker S, Tuddenham J, Sadiq SA. Mesenchymal stem cell-derived neural progenitors in progressive MS: Two-year follow-up of a phase I study. Neurol Neuroimmunol Neuroinflamm. 2020 Dec 4;8(1):e928. doi: 10.1212/NXI.0000000000000928. PMID: 33277427; PMCID: PMC7738177.

Stem Cell Therapies for Progressive Multiple Sclerosis

Stem Cell Therapies for Progressive Multiple Sclerosis

Multiple sclerosis (MS) is a long-term inflammatory disease that affects the central nervous system (CNS) of an estimated 3 million people worldwide. Characterized by the loss of the protective covering (myelin) of nerve fibers and degeneration of the nerve fibers themselves, MS damage disrupts communication between the brain and the rest of the body. Most MS patients start with a form known as relapsing-remitting MS (RRMS), where symptoms flare up at intervals and then partially or fully improve. Typical symptoms during these flare-ups include lack of muscle control, fatigue, and sensory impairments.

As the disease progresses, many individuals transition from RRMS to a progressive form of MS. Progressive MS is marked by a steady decline in function and an accumulation of disabilities, rather than periodic attacks. Unfortunately, the treatment options for progressive MS (PMS) are limited and often ineffective. The few available medications can help with active forms of PMS but are generally poor at slowing down the disease’s progression or promoting repair of damaged tissues.

The Promise of Stem Cell Therapy

Stem cell therapy has emerged as a promising approach to addressing the needs of patients with PMS. Stem cells have the unique ability to develop into various types of cells and offer several potential benefits, including providing support to nerve cells, modulating the immune system, and even replacing damaged cells. These characteristics make stem cells an attractive option for treating the complex pathology of PMS.

Current State of Stem Cell Therapy Research

In this review, Smith et al. explore the current state of preclinical and clinical evidence supporting the use of stem cells in treating PMS and discuss prospective hurdles impeding their translation into revolutionary regenerative medicines.

According to the authors, preclinical studies suggest that stem cells might help by reducing inflammation and protecting nerve cells in the CNS. However, translating these findings into effective treatments for humans remains a challenge.

Existing disease-modifying therapies (DMTs) have improved the treatment of RRMS by targeting the immune system to prevent the attacks that cause demyelination and nerve damage. These therapies work well for RRMS because they address the inflammatory processes that drive the disease. Unfortunately, as patients transition to the progressive phase of MS, conventional DMTs become less effective. PMS is characterized by a different set of pathological processes, including persistent inflammation behind a closed blood-brain barrier and activation of microglia (the brain’s immune cells) rather than T and B cells.

Stem Cell Therapy’s Potential Benefits

According to Smith et al. stem cell therapy offers potential benefits in several ways, including

  • Neuroprotection: Stem cells can potentially protect nerve cells from damage and death, which is crucial in progressive forms of MS.
  • Immunomodulation: Stem cells might help modulate the immune system, reducing harmful inflammation that contributes to disease progression.
  • Cell Replacement: Stem cells have the potential to replace damaged cells and promote the repair of damaged tissues.

While these potential benefits are compelling, the authors have found that the effectiveness of stem cell therapy in PMS is still largely unproven in clinical settings. The majority of current stem cell research focuses on the relapsing forms of MS or other diseases, with fewer studies dedicated specifically to PMS.

Current Status and Future Prospects

Stem cell therapy has demonstrated safety and feasibility across different types of cells and administration methods. The most promising results so far have been in studies involving neural stem cells (NSCs), which have shown potential in preclinical models for reducing chronic neuroinflammation. However, substantial clinical research is needed to validate these findings and determine the practical benefits of stem cell therapy for PMS.

The authors conclude that while stem cell therapy holds considerable promise for treating progressive multiple sclerosis, more research is needed. Future studies should focus on large, well-designed clinical trials to assess the benefits and risks of stem cell treatments. If proven effective, Smith et al. believe that stem cell therapy could become a revolutionary treatment for PMS and offer hope to millions of patients affected by this debilitating condition.

Source: Smith JA, Nicaise AM, Ionescu RB, Hamel R, Peruzzotti-Jametti L, Pluchino S. Stem Cell Therapies for Progressive Multiple Sclerosis. Front Cell Dev Biol. 2021;9:696434. Published 2021 Jul 9. doi:10.3389/fcell.2021.696434

Exploring Cell Therapy for Neuropathic Pain

Exploring Cell Therapy for Neuropathic Pain

Neuropathic pain (NP) occurs when the nerves located either inside or outside of the brain and spinal cord are damaged by a lesion or a condition. To date, pharmacological and surgical treatments to address NP have focused on providing symptomatic relief without treating the underlying cause of the condition. These treatment approaches have not been overwhelmingly successful with over 50% of NP patients attaining adequate pain relief.

Recently, an increasing amount of pre-clinical and clinical research has demonstrated cell transplantation-based therapy for NP to be a promising treatment alternative.  

In this review, Yin et al. summarize the use of cell grafts for the treatment of NP, synthesize the latest advances and adverse effects, and discuss possible mechanisms to further the development of cell transplant-based therapies for NP. 

Neural stem cells (NSCs) demonstrate the ability to divide, self-renew, and differentiate into neurons, astrocytes, and oligodendrocytes; they are also present in a wide array of tissues throughout the body. Considering they are capable of differentiating into neurons and glial, NSCs are considered an ideal candidate cell for replacing damaged nerve cells and delivering trophic factors to the site of lesions contributing to NP. Additional studies have demonstrated NSCs ability to regenerate nerves, offer neuroprotective effects, and secrete a number of factors that enhance the survival of motor and sensory neurons. NSCs transplantation coils also ease NP caused by peripheral nerve injury, a potential benefit that has been observed in animal models.

Olfactory ensheathing cells (OECs) are glial cells that surround and enclose the olfactory nerve bundle and possess the unique ability to transgress the peripheral nervous system (PNS) and central nervous system (CNS). Considering OECs have been shown to have neuro-regenerative functions, they are also considered to be a good choice for treating nerve injury and NP. Studies using animal models have confirmed that OECs transplantation could promote motor recovery and mitigate pain. Although OECs have good prospects of being used for treating NP, the authors call for additional research with longer observation time to verify their long-term effects and safety.

Mesenchymal stem cells (MSCs) can be obtained from a wide variety of sources and can be induced to differentiate into endoderm, mesoderm, and ectoderm cell lines. MSCs are often used for the treatment of diseases involving neuroinflammatory components and have been shown in animal studies to potentially alleviate NP symptoms. 

Other cell therapies currently being evaluated for use as a treatment for NP include bone marrow mononuclear cells, GABAergic cells, and genetically modified cells. 

The authors conclude that, despite the small number of clinical studies and the lack of systematic evidence, cell therapy as a treatment alternative for NP should be further explored. Specifically, further research should examine the optimal transplantation route, transplantation timing, number of transplanted cells, and transplantation survival rate.


Source:  “Cell therapy for neuropathic pain – Frontiers.” 27 Feb. 2023, https://www.frontiersin.org/articles/10.3389/fnmol.2023.1119223.

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our team.

You have Successfully Subscribed!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!