New Information on Using Growth Factors for Stem Cell Differentiation

New Information on Using Growth Factors for Stem Cell Differentiation

Using growth factors to help stem cells differentiate into chondrocytes, or cartilage cells has been shown to be an effective way to maintain cartilage tissue. However, there are several different types of growth factors, and little has previously been known about which growth factors may be most beneficial for help stem cells differentiate in a way that supports cartilage.

New research published in Stem Cell Reviews has addressed this issue by looking specifically at how four specific growth factors affect differentiation of mesenchymal stem cells – and particularly – how they affect chondrogenic differentiation. The four growth factors explored in this study were: transforming growth factor beta 1 (TGF-β1), bone morphogenetic protein 2 (BMP2), parathyroid hormone-related protein (PTHrP), and fibroblast growth factor 2 (FGF2).

The scientists used methods of analyzing the levels of growth factors as well as the extent of collagen content on days 16, 23, and 30 after implementing growth factor programs. The results showed that TGF-β1 and BMP-2, when used in combination, increased short-term collagen content and other indicators of well-maintained cartilage. When PTHrP or FGF2 was applied, the overall impact of TGF-β1 and BMP-2 on cartilage tissue was initially decreased. Nonetheless, successive applications of both PTHrP and FGF2 helped to maintain the effects of TGF-β1 and BMP-2.

These results help to clarify the ways in which growth factors can be used to improve the ability of bone marrow derived mesenchymal stem cells to differentiate into cells that are viable for supporting cartilage. The specific outcomes provide critical information that can help with protocols for chondrogenic differentiation of stem cells. Future research will likely build on these findings to help scientists and clinicians better understand the best formulas for how to use growth factors to achieve desired results with stem cells.

What Are the Benefits of Adding PRP to Stem Cell Therapy with Adipose Treatment?

What Are the Benefits of Adding PRP to Stem Cell Therapy with Adipose Treatment?

Adipose treatment is a procedure in which stem cells are derived from a section of the abdomen then used for therapeutic purposes. Adipose-derived stem cells (ADSCs) are less invasive to extract compared to cells derived from other sources, such as bone marrow. In therapeutic applications, adding platelet-rich plasma (PRP) to ADSCs has been shown to have benefits.

What is PRP?

PRP therapy is the process by which a small sample of blood is removed from the patient. The platelets are then separated from other components of the blood via a centrifuge. The isolated platelets are shown to have high levels of diverse growth factors.

Why Are Growth Factors Important?

ADSCs are shown to have reduced proliferative potential. While they do secrete a wide range of growth factors, PRP therapy is coupled with stem cell therapy to maximize their regenerative medicine potential benefits by helping to increase their proliferation and differentiation. PRP essentially empowers the ADSCs, stimulating cell proliferation and cell differentiation when used for regenerative applications.

Which Applications Can the Therapy Be Used for?

Researchers have stated that the therapeutic potential of ADSCs is “enormous,” but by kickstarting the stem cells with PRP, it’s possible that the therapy will unlock even further medicinal possibilities. Anti-inflammatory and anti-apoptotic effects have been demonstrated by ADSCs, and there are many clinical trials which have either been completed or are ongoing to explore the treatment’s effects. Skeletal repair, soft tissue generation, and immune disorders such as Crohn’s disease and multiple sclerosis are just some of the therapeutic targets for this treatment. In specific, using ADSCs with PRP has been shown to aid periodontal tissue engineering, tendon repair, wound healing, and even bone regrowth.

Because the ADSCs are fairly easy to source and blood samples required for PRP are also simple to acquire, combining PRP to adipose stem cell therapy shows promise for delivering a powerful treatment that can address a broad variety of conditions, all with a minimally invasive approach.

Treating Chronic Fatigue Syndrome with Hyperbaric Oxygen Therapy

Treating Chronic Fatigue Syndrome with Hyperbaric Oxygen Therapy

Chronic fatigue syndrome, also known as systemic exertion intolerance disease, is a challenging condition for many patients, their families, and the doctors who care for them. The illness is difficult to diagnose since not all symptoms will appear in every patient. Some do experience feeling chronically fatigued yet may not have chronic fatigue syndrome.

Most patients with chronic fatigue syndrome have a sudden onset of fatigue that may occur soon after an infection, such as a cold, pneumonia, or mononucleosis. Patients with chronic fatigue syndrome usually experience overwhelming fatigue that may interfere with sleep and the ability to think and concentrate. Symptoms tend to get worse after periods of heavy physical activity, but may also occur after simply rising from a seated position or standing for a long period. Importantly, most patients with chronic fatigue syndrome began life with few or no symptoms. Many were previously high functioning in their daily lives who are now impacted by the symptoms they experience.

Just as chronic fatigue syndrome is difficult to diagnose, it is also difficult to treat. Not every treatment will work for every patient. In fact, there is no widely accepted, specific treatment for chronic fatigue syndrome. Treatment is mostly supportive and aimed at reducing symptoms. While many medications have been tried such as antidepressants, steroids, stimulants, vitamin B12, essential fatty acids (and many others), no drug treatment has been consistently successful at helping people with chronic fatigue syndrome.

A recent report by Akarsu and colleagues may offer some hope for people with chronic fatigue syndrome. Sixteen patients with confirmed chronic fatigue syndrome received 15 sessions of hyperbaric oxygen therapy over a period of three weeks. Each treatment was for 90 minutes in a hyperbaric oxygen chamber. Participants in the study agreed to stop all physical therapy or medication for chronic fatigue syndrome so that those treatments would not interfere with the results of the study.

The research group found that chronic fatigue syndrome patients tolerated hyperbaric oxygen therapy very well, and had no complications. In all measures tested, patients were significantly better after treatment than they were before hyperbaric oxygen therapy started. Specifically, patients had better scores on two clinical tests of fatigue (visual analog fatigue scale and the Fatigue Severity Scale) and in a quality of life assessment (Fatigue Quality of Life Score). The improvement in scores was not subtle—in each test, there was a clinically significant increase in the average score. The results showed that hyperbaric oxygen therapy significantly and substantially reduced fatigue and improved quality of life in patients with chronic fatigue syndrome/systemic exertion intolerance disease. These results are incredibly encouraging since they indicate hyperbaric oxygen therapy may be an effective treatment for those battling chronic fatigue syndrome.

Why Venous Blood-Derived PRP is Not Effective Alone for Treating COPD

Why Venous Blood-Derived PRP is Not Effective Alone for Treating COPD

Chronic obstructive pulmonary disease (COPD) is an incurable lung disorder which makes it difficult to breathe. It includes chronic bronchitis and emphysema and is characterized by a persistent cough and mucus production. While it is not curable, it can be managed through ongoing treatment to provide patients with effective symptom control and good quality of life. There are a few key types of lung damage that can occur in COPD:

  • With emphysema, the air sacs (alveoli) in the lungs are compromised. The walls of alveoli are stretched and actually cause the lungs to expand, which makes it more difficult for air to move in and out.
  • In chronic bronchitis, the bronchial tubes are constantly inflamed, which limits airflow. In specific, the cilia (hair-like structures in the airways) become damaged. The airway can also become swollen and clogged.
  • Refractory asthma is also marked by swelling of the bronchial airways. Even medications cannot reverse the swelling.

Here, we examine a form of COPD treatment which has been gaining attention recently.

Blood-Derived PRP

Blood-derived platelet-rich plasma (PRP) therapy is increasingly being used to treat a broad range of conditions, including sports injuries and arthritis. The procedure is performed via intravenous blood extraction. After the blood cells are harvested, they are processed, and the platelets are separated from other blood components. With the higher concentration of platelets, the treated blood is then reinserted into the patient with the hopes of reducing inflammation and speeding up the body’s healing process.

The problem with blood-derived PRP is that the evidence illustrating the effectiveness of this treatment for COPD is lacking. While some studies have been performed and suggest the treatment’s ability to support hair regrowth and reduce osteoarthritis pain, the lack of definitive proof supporting PRP therapy’s ability to make a noticeable impact on COPD has spurred criticism.

A Better Alternative

Stem cell PRP takes PRP injections a step further by mixing platelets with stem cells to treat the structural airway issues present in all forms of COPD. In numerous studies, this approach has shown promise. Coupling blood derivatives with stem cell therapy have proven effective in tissue regeneration in areas like the knee and gums, for instance. In one report, researchers concluded that the therapy “offers a promising therapeutic approach that has shown potential in diverse degenerative lung diseases” based on findings across 15 separate studies.

Through traditional PRP treatment, platelets become 5-10 times more concentrated, or 150,000- 450,000 platelets per microliter. When combined with stem cells, however, they become supercharged and platelet counts are much higher. Because research suggests that the therapeutic level for platelet count should be closer to 1,000,000 per cubic milliliter, PRP and stem cells are far more powerful than PRP alone. Moreover, PRP therapy is derived from whole blood alone, meaning it contains very few CD34+ cells – the cells commonly found in the umbilical cord and bone marrow which have the greatest self-renewal capacity – if any.

With stem cell therapy for COPD, it is guaranteed that these cells will be introduced into the body in a higher concentration. They can then promote the healing process, replacing countless cells throughout the entire body, including the lung tissue.

Researchers Identify How Mesenchymal Stem Cells Achieve Their Immunosuppressive Effects

Researchers Identify How Mesenchymal Stem Cells Achieve Their Immunosuppressive Effects

In a study published in Cell Stem Cell, researchers helped to clarify the mechanism by which mesenchymal stem cells achieve their immunosuppressive effects. While immunosuppression is not always appealing, there are certain contexts in which suppressing the immune system is critical. These cases include patients with autoimmune disease, where their immune system begins attacking the body’s organs, as well as skin grafts, where the immune system’s reaction to new skin often leads to graft rejection.

Mesenchymal stem cells have been strategically chosen over other types of stem cells when their immunosuppressive properties are beneficial. Nonetheless, because the specific reasons that these cells lead to immunosuppression are unknown, researchers have begun to investigate potential ways that the immunosuppression occurs.

One critical factor that the researchers considered was that the immunosuppressive effects of mesenchymal stem cells may not be innate. Given that immunosuppression is not always observed when mesenchymal stem cells are employed, the researchers hypothesized that the immunosuppression may depend on the presence of other factors in combination with mesenchymal stem cells.

Nitric oxide was one factor of particular interest to the researchers because nitric oxide is known to suppress the immune system’s T cells. Nitric oxide easily diffuses across barriers and interacts with a number of important proteins, making it an attractive candidate for contributing to immunosuppression that is observed with the use of mesenchymal stem cells.

Consistent with their hypothesis, the researchers found that nitric oxide does mediate the immunosuppression achieved by mesenchymal stem cells and demonstrated a specific mechanism by which this mediation occurs. This new information improves our understanding of how mesenchymal stem cells work and will therefore also enhance our ability to strategically use these cells to achieve the therapeutic benefits for which we strive.

 

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our team.

You have Successfully Subscribed!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!