by admin | Jul 9, 2018 | Health Awareness, Parkinson's Disease, Stem Cell Research, Studies
Parkinson’s disease is known to be a slowly progressing neurological disorder that can cause issues with the motor movement of the body. Signs of Parkinson’s disease can include severe stiffness, loss of balance, and lethargy. Although there are no cures for the condition, symptoms can be slowed down. However, most of the prescribed drugs for Parkinson’s disease can decrease in effectiveness over the course of time. This led to some investigation from researchers to consider the role of exercise as a treatment option. Initial studies revealed that exercise does reduce the symptoms and slowed the progression of the condition.
According to a recent phase 2 study, intense treadmill exercise can potentially reduce the progression symptoms of Parkinson’s disease. In this study, researchers treated exercise as a treatment and tracked the safety and effectiveness of different levels of exercise. The study consisted of 128 people that had been diagnosed with Parkinson’s disease and were not taking any medications nor exercised. The aerobic capacity, heartbeats and the severity of the disease were tested for a baseline.
The patients were divided into three groups. Group 1 was asked to continue living their life in a normal manner. Group 2 was asked to implement exercise in which they would walk on the treadmill daily for 30 minutes, four times a week. The speed of the treadmill was manipulated to maintain the heart rate of the participants between 60 to 65 percent of their maximum heart rate. Group 3 was asked to also implement exercise for the same amount of time but their heart rate was maintained in the range of 80 to 85 percent of their maximum rates. The patients were under supervision for the initial month and then asked to continue exercising on their own.
At the end of the six-month study, Group 1 showed their symptoms progressed further. Group 2 showed their symptoms progressed but not as much as Group 1. Group 3 showed almost no progression in their symptoms after following a heavier exercise regimen as the other groups. This study concluded that higher intensity exercise helped in decreasing the symptoms by improving the neuronal blood supply. Improved blood flow helps with the overall health of the brain and slows down the deterioration of the body.
The findings from the study are quite encouraging for patients who are recently diagnosed or early in their symptoms to have great benefits from the heavy exercise program. However, it is advised to consult with your physician prior to starting an exercise plan to avoid injuries and ensure your safety.
by admin | Jul 6, 2018 | Stem Cell Therapy, COPD, Stem Cell Research
Chronic obstructive pulmonary disease (COPD) is an incurable lung disorder which makes it difficult to breathe. It includes chronic bronchitis and emphysema and is characterized by a persistent cough and mucus production. While it is not curable, it can be managed through ongoing treatment to provide patients with effective symptom control and good quality of life. There are a few key types of lung damage that can occur in COPD:
- With emphysema, the air sacs (alveoli) in the lungs are compromised. The walls of alveoli are stretched and actually cause the lungs to expand, which makes it more difficult for air to move in and out.
- In chronic bronchitis, the bronchial tubes are constantly inflamed, which limits airflow. In specific, the cilia (hair-like structures in the airways) become damaged. The airway can also become swollen and clogged.
- Refractory asthma is also marked by swelling of the bronchial airways. Even medications cannot reverse the swelling.
Here, we examine a form of COPD treatment which has been gaining attention recently.
Blood-Derived PRP
Blood-derived platelet-rich plasma (PRP) therapy is increasingly being used to treat a broad range of conditions, including sports injuries and arthritis. The procedure is performed via intravenous blood extraction. After the blood cells are harvested, they are processed, and the platelets are separated from other blood components. With the higher concentration of platelets, the treated blood is then reinserted into the patient with the hopes of reducing inflammation and speeding up the body’s healing process.
The problem with blood-derived PRP is that the evidence illustrating the effectiveness of this treatment for COPD is lacking. While some studies have been performed and suggest the treatment’s ability to support hair regrowth and reduce osteoarthritis pain, the lack of definitive proof supporting PRP therapy’s ability to make a noticeable impact on COPD has spurred criticism.
A Better Alternative
Stem cell PRP takes PRP injections a step further by mixing platelets with stem cells to treat the structural airway issues present in all forms of COPD. In numerous studies, this approach has shown promise. Coupling blood derivatives with stem cell therapy have proven effective in tissue regeneration in areas like the knee and gums, for instance. In one report, researchers concluded that the therapy “offers a promising therapeutic approach that has shown potential in diverse degenerative lung diseases” based on findings across 15 separate studies.
Through traditional PRP treatment, platelets become 5-10 times more concentrated, or 150,000- 450,000 platelets per microliter. When combined with stem cells, however, they become supercharged and platelet counts are much higher. Because research suggests that the therapeutic level for platelet count should be closer to 1,000,000 per cubic milliliter, PRP and stem cells are far more powerful than PRP alone. Moreover, PRP therapy is derived from whole blood alone, meaning it contains very few CD34+ cells – the cells commonly found in the umbilical cord and bone marrow which have the greatest self-renewal capacity – if any.
With stem cell therapy for COPD, it is guaranteed that these cells will be introduced into the body in a higher concentration. They can then promote the healing process, replacing countless cells throughout the entire body, including the lung tissue.
by admin | Oct 20, 2017 | Stem Cell Research
Xiaodong Pang and colleagues have demonstrated the successful use of human umbilical cord tissue-derived mesenchymal stem cells in the treatment of chronic discogenic low back pain. The study, published in Pain Physician, is the first study to addressing the potential of this particular treatment option for chronic discogenic low back pain.
Chronic discogenic low back pain is the leading cause of chronic low back pain, which leads to a significant amount of disability. This type of back pain does not currently have any highly successful treatment options. Generally, the pain is managed conservatively, and if all else fails, surgical fusion is undertaken. Neither of these options addresses the underlying cause of chronic discogenic low back pain and instead simply address the symptoms, offering ways to try to reverse those symptoms.
In this initial study conducted by Pang and colleagues, the researchers aimed to establish that human umbilical cord tissue-derived mesenchymal stem cells could be both feasibly and safely used in humans to treat chronic discogenic low back pain. The study, conducted at a spine center in China, focused on two patients with chronic discogenic low back pain. Both patients underwent the transplantation of the stem cells, and their back pain symptoms and lumbar function were assessed both immediately after the transplants and again two years later.
The researchers found that both the pain and the function associated with the patients’ back conditions improved immediately after the stem cell transplants. In addition to demonstrating that this particular transplant procedure was feasible, the researchers also showed that it was safe, as neither patient suffered side effects.
There are a number of reasons for which human umbilical cord tissue-derived mesenchymal stem cells may provide the benefits that these researchers observed. For instance, unlike other stem cell types, these cells have the ability to differentiate into a number of different types of cells. The results of other studies suggest that these stem cells may help with this lower back condition by altering cell activity such that less inflammation occurs.
Going forward, researchers will need to replicate the findings of this study to show that the positive effects of human umbilical cord tissue-derived mesenchymal stem cells in chronic discogenic low back pain extends to the general patient population. Further, as the mechanism by which these cells may improve the condition is not clear, research that helps to elucidate the way these cells confer their benefits will also help in the development of relevant therapeutic interventions.
To learn more about stem cell treatments click here.
Reference
Pang, X, Yang, H, & Peng, B (2014). Human umbilical cord mesenchymal stem cell transplantation for the treatment of chronic discogenic low back pain. Pain Physician. 17: E525-530.
by admin | Oct 16, 2017 | Stem Cell Research
In a study published in Cell Stem Cell, researchers helped to clarify the mechanism by which mesenchymal stem cells achieve their immunosuppressive effects. While immunosuppression is not always appealing, there are certain contexts in which suppressing the immune system is critical. These cases include patients with autoimmune disease, where their immune system begins attacking the body’s organs, as well as skin grafts, where the immune system’s reaction to new skin often leads to graft rejection.
Mesenchymal stem cells have been strategically chosen over other types of stem cells when their immunosuppressive properties are beneficial. Nonetheless, because the specific reasons that these cells lead to immunosuppression are unknown, researchers have begun to investigate potential ways that the immunosuppression occurs.
One critical factor that the researchers considered was that the immunosuppressive effects of mesenchymal stem cells may not be innate. Given that immunosuppression is not always observed when mesenchymal stem cells are employed, the researchers hypothesized that the immunosuppression may depend on the presence of other factors in combination with mesenchymal stem cells.
Nitric oxide was one factor of particular interest to the researchers because nitric oxide is known to suppress the immune system’s T cells. Nitric oxide easily diffuses across barriers and interacts with a number of important proteins, making it an attractive candidate for contributing to immunosuppression that is observed with the use of mesenchymal stem cells.
Consistent with their hypothesis, the researchers found that nitric oxide does mediate the immunosuppression achieved by mesenchymal stem cells and demonstrated a specific mechanism by which this mediation occurs. This new information improves our understanding of how mesenchymal stem cells work and will therefore also enhance our ability to strategically use these cells to achieve the therapeutic benefits for which we strive.
by admin | Oct 14, 2017 | Stem Cell Research
Research into stem cell-based therapies has increased in recent years due to observations that these types of cells can provide new avenues for treatment where other treatment options are limited. Though bone marrow mesenchymal stem cells have been the gold standard of stem cell-based therapies, there is mounting evidence that umbilical cord stem cells may offer some advantages over bone marrow mesenchymal stem cells, as well as other popular stem cell types, such as adipose tissue, periodontal ligament, and dental pulp. In a recent review in Tissue Engineering, Reine El Omar and colleagues describe the state of umbilical cord stem cell research and the potential benefits of using these cells in stem cell therapies.
According to Omar et al., umbilical cord-derived stem cells were once thought of as medical waste. However, they have now been shown to provide advantages over other stem cells in stem cell-based therapies in 3 major ways:
- Umbilical cord stem cells are easier to collect than are other stem cell types. Extracting bone marrow mesenchymal stem cells, for instance, is technically difficult and painful for donors. Umbilical cord stem cells can be painlessly collected and banked.
- Stem cells tend to proliferate more than other stem cells types. Other stem cell types have been shown to have limited proliferation and differentiation potential. Umbilical cord stem cells, on the other hand, appear to be more proliferative and differentiate longer.
- Umbilical cord stem cells are associated with less severe immune reactions than are other stem cells types. A critical aspect of the practicality of stem cells is their ability to act as therapeutic agents without causing adverse reactions. When the immune system perceives stem cells as dangerous foreign agents, the immune system can react in dangerous ways that lead to tissue damage and even death. Compared to other types of stem cells, umbilical cord stem cells appear to be associated with less severe immune reactions.
While efficacy is important for stem cell-based therapies, safety is perhaps more critical. Thus, research into how stem cells can be used therapeutically must focus not only on what therapeutic impact these cells can have but also what risks these cells pose. Future research will help to determine the safest cells to use and how those cells can best be incorporated to achieve their therapeutic goals.
Learn more about stem cell treatments here.
Reference
Omar et al. (2014). Umbilical cord mesenchymal stem cells: The new gold standard for mesenchymal stem cell-based therapies?