Melatonin Benefits for Antioxidative Defense

Melatonin Benefits for Antioxidative Defense

Melatonin has long been hailed for its health benefits, and the more researchers study the hormone, the more its broad range of abilities is revealed. Known as “the sleep hormone,” the power of melatonin goes far beyond simply regulating sleep patterns. Scientists believe it could also play a role in managing chronic conditions like heart disease and diabetes, and that it may even promote bone health and reduce obesity. Most recently, it has been discovered that melatonin could help safeguard genetic material and protect against age-related disease and health decline. Here, we take a closer look at how the hormone works to boost wellness.

A Disease-Fighting Hormone

Free radicals are chemically reactive molecules which are linked to a host of diseases, including Parkinson’s disease, Alzheimer’s disease, and cancer. We encounter them on a daily basis, as they are found in everything from the air we breathe to medications and foods. Reducing the volume of free radicals in the body is therefore critical to preventing and managing diseases. One of the ways the body fights off free radicals is through antioxidants, the substances that counteract them.

According to research, melatonin is a potent agent in antioxidative defense. It can enter any bodily fluid or cell and actively scavenge free radicals, and it also has the ability to influence circulation. In addition to fighting free radicals, melatonin can reduce the generation of these dangerous molecules and simultaneously protect critical functions of the cells.

Research also suggests that melatonin’s ability to prevent oxidative damage, specifically in brain cells, make the substance a prime candidate for treating conditions such as Alzheimer’s disease, amyotrophic lateral sclerosis (ALS), Huntington’s disease, stroke, and brain trauma.

Where is Melatonin Found?

Melatonin was first discovered as a hormone of the pineal gland, but it is also produced elsewhere in the body. Specifically, the gastrointestinal (GI) tract is a rich source of the hormone, with its tissues holding 10-100 times as much of the hormone than the blood. The GI tract also has at least 400 times more melatonin than the pineal gland.

Certain types of food are also natural sources of melatonin, including ginger, rice, bananas, barley, sweet corn, and Morello cherries. Additionally, over-the-counter melatonin supplements are available, but it is recommended that anyone considering a supplement regimen consult their doctor. Certain individuals, including women who are pregnant or breastfeeding, may not be advised to take the supplement.

Colostrum: The Most Important Nutrient for the Prevention of Chronic Conditions

Colostrum: The Most Important Nutrient for the Prevention of Chronic Conditions

Colostrum is the milk produced by the mammary glands during pregnancy prior to giving birth. It is rich in antibodies that help prevent the newborn from various conditions. Colostrum as compared to normal milk contains a high amount of nutrients and fat, making it highly beneficial.

The most important thing to know about colostrum is that it is not a medication. It is a naturally designed food that maintains the health and prevents conditions. Colostrum is effective for shutting down the onset of conditions and infections, which helps the body to repair itself and allows the individual to enjoy a healthy and radiant life.

Colostrum is the Key to Gut Health

Colostrum is the source of everything that is required to maintain a healthy gastrointestinal tract. It is known that most of our conditions take birth in the gut and proper absorption of nutrients is the key to great health. It is one of the primary function of colostrum to maintain a healthy gut, which is the basis of the overall healthy body.

When the beneficial bacteria present in our intestine is outnumbered by the harmful bacteria then our gut is said to be out of balance. This imbalance has many consequences, one of which is the leaky gut syndrome.

Leaky gut syndrome is a condition due to which various pathogens and toxins pass through the lining of the gut and move freely in the body, this leads to various conditions. Leaky gut syndrome, if not treated can be a life-threatening condition.

Colostrum is an optimal treatment for treating leaky gut syndrome because it has growth factors that help repair the damage of the intestine to normal. It is also rich in immunoglobulins that control the pestering of fungi and bacteria in the body. In various conducted studies colostrum has successfully increased the surface area of the lining of the intestine, thereby improving the absorption of nutrients.

Colostrum: The Perfect & Functional Food

Looking at all the immune and growth factors that are present in colostrum, it is called the best alternative to pharmaceutical drugs, from steroids and antibiotics. Colostrum is also safe for people suffering from lactose intolerance and has no allergic reactions or side effects.

A functional food is one that has potential health benefits compared to normal food and is high in nutrients. Colostrum is high in nutrients and can be combined with other food products. It is most effective when taken on an empty stomach. Available in the form of capsules, colostrum is more effective and bioavailable.

Colostrum for Autoimmune Conditions:

Autoimmune conditions are those in which the body starts producing antibodies against itself. Colostrum has shown to be highly effective to treat autoimmune conditions like Lupus, Parkinson’s disease, and Multiple Sclerosis. Chemokine receptors have been observed to be the cause of the development of all these conditions. Colostrum produces antagonists of these receptors and has been shown to decrease the symptoms of many common autoimmune conditions.

Colostrum Used as a Topical Application:

Colostrum, if applied externally can help heal the burns, acne, cuts and various abrasions and even surgical cuts. If applied orally, it can help deal with sensitive teeth relieve canker sores and gingivitis.

Some Overall Benefits of Colostrum are:

Anti-inflammatory
Anti-aging
Anti-fungal
Anti-bacterial
Cancer
AuAutoimmuneondition
Blood pressure
Cholesterol
Sugar levels
Diabetes
Digestion
Flu prevention
Fat reduction
Heart health
Gut health
Immunity
Joint repair
Immunity
Mobility
Muscle repair
Pain
Stamina
Tissue repair
Wound healing
Weight loss
Inflammation

Below is a list of some common conditions for which colostrum can be effective:

Allergies
Anemia
Arthritis
Autoimmune conditions
Asthma
Bacterial infection
Bone marrow transplant
Cancer
Alcoholism
Allergies
Anemia
Arthritis
Crohn’s disease
Chronic fatigue
Diarrhea
Fibromyalgia
Food poisoning
Heart disease
Hepatitis
Influenza
Intestinal bowel syndrome
Joint repair
Leaky gut
Lupus
Multiple sclerosis
Osteoporosis
Obesity
Premature birth
Osteoporosis
Ulcer
Yeast infection
Viral infection

Where Can I Find Colostrum?

If you have any symptoms suggestive of gastro-intestinal dysbiosis (diarrhea, constipation, bloating, reflux, stomach discomfort or pain) then you should seek further work-up by your physician or a Functional Medicine Doctor.

In the meantime, it is recommended to start using Bovine Colostrum which can be found at Sovereign Laboratories at www.mysovlabs.com. Simply mix 2 tablespoons in 6oz of water and consume twice per day on an empty stomach. This product is full of gut healing immunoglobulins. Use for 2-3 months should result in significant improvement.

In addition, it is also recommended to take a good probiotic while using your bovine colostrum. Vitamin D levels should be optimized to levels between 80-100.

Is Stress Linked to Autoimmune Diseases?

Is Stress Linked to Autoimmune Diseases?

In a recent edition of JAMA, the results of a 30-year study examining the possible connection between stress and autoimmune disease were revealed. The findings don’t simply demonstrate a link; instead, they reveal that stress-related disorders are significantly associated with risks of developing the subsequent autoimmune disease. In the study of over 100,000 subjects, the correlation showed that individuals with a diagnosed stress-related disorder were 30-40% more likely to later be diagnosed with one of many possible autoimmune diseases.

What is a Stress-Related Disorder?

The type of stress study subjects encountered is not to be confused with the stressors we encounter during everyday life. Sitting in traffic or worrying about being late for a meeting, for example, are examples of acute stress. These forms of short-term stress generally come and go but fail to create the sort of long-term damage produced by chronic stress, or stress-related disorders.

Stress-related disorders are mental health conditions resulting from short- and long-term anxiety from mental, physical, or emotional stress. Examples of these include post-traumatic stress disorder (PTSD), obsessive-compulsive disorder, acute stress reaction, and adjustment disorder.

Which Types of Autoimmune Disorders Are Linked to Stress?

According to the study’s findings, individuals with stress-related disorders were more inclined to be diagnosed with one of 41 autoimmune disorders. Among the many autoimmune diseases observed by the research were psoriasis, Crohn’s disease, rheumatoid arthritis, and celiac disease.

Interestingly, additional variables seemed to further increase – or decrease – one’s risks of developing an autoimmune disease. Being diagnosed with PTSD at a young age, for instance, increased risks, while receiving antidepressant treatment shortly after being diagnosed with PTSD lowered rates of subsequent autoimmune disease diagnosis. Thus, it could be inferred that receiving treatment for a stress-related disorder may help to treat not only the stress itself but also minimize the lasting implications caused by it, including increased risks of disease.

What Causes the Connection?

Further research must still be conducted to pinpoint the precise long-term effects stress has on the body, and more specifically, on the immune system. Experts speculate that factors such as changes in cortisol levels and pro-inflammatory cytokine levels may need to be examined. Another hypothesis set forth by researchers is that individuals living with conditions such as PTSD might be more inclined towards unhealthy behaviors such as drinking more alcohol or sleeping less.

Although further research into this connection has yet to be conducted, one important takeaway from the findings is the fact that seeking treatment for stress-related disorders should now be considered more critical than ever. By consulting mental health professionals, individuals living with these conditions can pursue a tailored treatment approach to support short- and long-term improvements in overall wellness. For those with an auto-immune condition, see how stem cell therapy may help your symptoms and improve quality of life.

Exercise to Help with Parkinson’s Disease

Exercise to Help with Parkinson’s Disease

Parkinson’s disease is known to be a slowly progressing neurological disorder that can cause issues with the motor movement of the body. Signs of Parkinson’s disease can include severe stiffness, loss of balance, and lethargy. Although there are no cures for the condition, symptoms can be slowed down. However, most of the prescribed drugs for Parkinson’s disease can decrease in effectiveness over the course of time. This led to some investigation from researchers to consider the role of exercise as a treatment option. Initial studies revealed that exercise does reduce the symptoms and slowed the progression of the condition.

According to a recent phase 2 study, intense treadmill exercise can potentially reduce the progression symptoms of Parkinson’s disease. In this study, researchers treated exercise as a treatment and tracked the safety and effectiveness of different levels of exercise. The study consisted of 128 people that had been diagnosed with Parkinson’s disease and were not taking any medications nor exercised. The aerobic capacity, heartbeats and the severity of the disease were tested for a baseline.

The patients were divided into three groups. Group 1 was asked to continue living their life in a normal manner. Group 2 was asked to implement exercise in which they would walk on the treadmill daily for 30 minutes, four times a week. The speed of the treadmill was manipulated to maintain the heart rate of the participants between 60 to 65 percent of their maximum heart rate. Group 3 was asked to also implement exercise for the same amount of time but their heart rate was maintained in the range of 80 to 85 percent of their maximum rates. The patients were under supervision for the initial month and then asked to continue exercising on their own.

At the end of the six-month study, Group 1 showed their symptoms progressed further. Group 2 showed their symptoms progressed but not as much as Group 1. Group 3 showed almost no progression in their symptoms after following a heavier exercise regimen as the other groups. This study concluded that higher intensity exercise helped in decreasing the symptoms by improving the neuronal blood supply. Improved blood flow helps with the overall health of the brain and slows down the deterioration of the body.

The findings from the study are quite encouraging for patients who are recently diagnosed or early in their symptoms to have great benefits from the heavy exercise program. However, it is advised to consult with your physician prior to starting an exercise plan to avoid injuries and ensure your safety.

New Study Shows Adipose Derived Stem Cells Reversing Negative Effects of Parkinson’s Disease

New Study Shows Adipose Derived Stem Cells Reversing Negative Effects of Parkinson’s Disease

Earlier this year, a group of scientists led by Yoo-Hun Suh at the Seoul National University Medical College published their work demonstrating the potential use of human adipose-derived stem cells (hASC‘s) in Parkinson’s therapy. Their article, Therapeutic potentials of human adipose-derived stem cells on the mouse model of Parkinson’s disease, was published in the academic journal Neurobiology of Aging.

Many Parkinson’s disease treatments aim to compensate for the loss of dopamine that is seen in the brains of Parkinson’s patients, but because those treatments have their limitations, focus has shifted to the use of stem cells as a therapeutic option for Parkinson’s disease. The rise in stem cell research for Parkinson’s disease has also increased as scientists have recognized the importance of mitochondrial deterioration in the development of Parkinson’s disease.

Stem cells that can be easily transplanted and readily proliferate are seen as ideal stem cell candidates for such treatments. hASC are pluripotent, meaning they can differentiate into a number of different types of cells, including cells that resemble neurons, the cells of the brain. These particular stem cells are useful because they tend not to create a reaction by the immune system, and they can pass the blood-brain barrier and proliferate within the brain.

In this study, the researchers used a common mouse model of Parkinson’s disease, which is created with a specific neurotoxin called 6-hydroxydopamine (6-OHDA). They injected hASC into the veins of mice and assessed how these stem cells affected Parkinson’s disease symptoms, dopamine levels in the striatum, the part of the brain affected by Parkinson’s disease, and the integrity of mitochondria.

The researchers found that hASC improved the motor deficits in the mice modeled to display Parkinson’s disease symptoms. Using positron emission tomography (PET) imaging, the researchers also showed increased dopamine levels in the striatum of these mice. Finally, the researchers also showed that mitochondrial function was restored in mice who received hASC injections.

Overall, this study captures the significant potential of hASC to provide successful therapies for neurodegenerative disorders like Parkinson’s disease. That the injection of these cells in a mouse model of Parkinson’s led to both behavioral and physiological improvements in mice demonstrates the great promise for stem cell therapies, and in this context, particularly for therapies developed from adipose-derived stem cells.

Learn more about stem cell treatment for Parkinson’s disease.

 

Reference

Choi, H., Kim, H., Oh, J., Park, H., Ra, J., Chang, K., & Suh, Y. (2015). Therapeutic potentials of human adipose-derived stem cells on the mouse model of Parkinson’s disease. Neurobiology of Aging, 36(10), 2885-2892.

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our team.

You have Successfully Subscribed!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!