Please note we will be closed 12-24-25 to 01-02-26 for the holidays. We will resume normal operations on January 5th.
The Role of Mesenchymal Stem Cells in Counteracting Oxidative Stress-Related Neurodegeneration

The Role of Mesenchymal Stem Cells in Counteracting Oxidative Stress-Related Neurodegeneration

Neurodegenerative diseases affect over 50 million Americans each year and occur as a result of nerve cells in the brain, peripheral nervous system, and the central nervous system slowly and progressively losing function before eventually dying[1].

Although there are over 600 known neurological disorders, the most common neurodegenerative diseases continue to be Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and Amyotrophic lateral sclerosis (ALS).

While significant progress has been made in identifying mechanisms and risk factors contributing to the cause and development of these various neurodegenerative diseases, evidence continues to indicate that many of these conditions are influenced by oxidative stress. Research has also shown that antioxidants, the only strategy used to address this mechanism to date, have been demonstrated to be ineffective and, in some instances, even causing additional side effects.

In addition, although progress has been made in the overall understanding and management of several side effects associated with conditions contributing to neurodegeneration and that multifactor intervention introduced at an early stage is believed to be most successful, research has yet to identify a way to slow the progression of these debilitating conditions.

As part of this review, Angeloni et al. provide an analysis of recent literature examining the role of oxidative stress in several neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, ALS, retinal ganglion cells, and ataxia. The authors also discuss the emerging role of mesenchymal stem cells (MSC) and their potential in fighting oxidative stress and enhancing antioxidant capacity and neurotrophin expression. 

Recent literature concludes that oxidative stress has a significant role in each of the neurodegenerative diseases mentioned above. Specifically, oxidative stress has been found to:

  • Play a fundamental role in Alzheimer’s disease, affecting different pathways involved in AD brain cells.
  • Have a causal role and also be a result of different pathologies in PD.
  • Be both a cause and consequence of impaired function related to ALS.
  • Be a significant cause of damage in a number of ocular neurodegenerative diseases, including diabetic retinopathy, glaucoma, and retina ischemia-reperfusion injury.
  • Increase ROS production linked to mitochondrial dysfunction in ataxia cell models.

The literature also indicates that MSC therapy can be a promising future management tool for neurodegenerative disease that enhances antioxidant capacity, increases neurotrophin expression, inhibits pro-inflammatory cytokine secretions, and counteracts microglial ROS production.

However, the authors also conclude that while the role of MSCs in counteracting oxidative stress-related neurodegeneration, additional studies demonstrating a more neurodegenerative disease-specific therapeutic MSC strategy for preventing a broad range of previously mentioned disorders are needed. 

Accordingly, these future studies will be useful in helping to discover the appropriate numbers of MSCs needed for transplantation, realize optimal timing of transplantation, identify the correct disease stage for transplantation, and better understand the safety, functionality, recovery, and motor and cognitive improvements of various MSCs used in this process.

Source: (2020, May 7). Role of Mesenchymal Stem Cells in Counteracting Oxidative Stress ….  from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7246730/


[1] “Neurodegenerative Diseases: An Overview of Environmental Risk ….” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1280411/. Accessed 18 Oct. 2021.

Understanding the Underlying Mechanisms Of Mesenchymal Stem Cell-based Therapy

Understanding the Underlying Mechanisms Of Mesenchymal Stem Cell-based Therapy

Since their discovery in 1960, mesenchymal stem cells (MSCs) have been found to migrate to assist and support the repair of injured tissue.  In addition, and more importantly, MSCs have demonstrated therapeutic effects resulting from their ability to modulate various cells found in both the innate and adaptive immune systems.

To date, over 900 clinical trials have used MSCs to explore various diseases ranging from bone/cartilage repair, diabetes, cardiovascular diseases, immune-related, and neurological disorders by promoting neovascularization, increasing angiogenesis, enhancing cell viability, and inhibiting cell death.

While there have been promising results from animal studies, further research is taking place to determine the therapeutic efficacy of MSCs.  Fan et al.’s review summarizes the progress of specific mechanisms underlying the tissue regenerative properties and immunomodulatory effects of MSCs and provides an overview of the current research on the rapid development of MSC-based therapies.

According to Fan et al., the therapeutic potential of MSCs is attributed to two specific aspects: replacement of the damaged tissue through differentiating into various cell lineages and regulation of immune response by immunomodulatory function. The major mechanism underlying MSC-based therapy appears to be the paracrine function, which allows for reduction of inflammation and increased cell proliferation while the tissue is being repaired.

Additionally, MSCs have been well demonstrated to have exceptional potential for differential.  Upon transplantation, MSCs’ ability to differentiate appears to be the key to successful integration into the tissue of the host. Their ability to differentiate also appears to depend on factors such as donor age, tissue origin, cell passage numbers, cell densities, and duration of cell culture, so the authors are calling for further study to better understand the mechanisms of regulatory pathways and to improve differentiation efficacy.

Although MSC-based therapies have demonstrated significant progress, a full understanding of the ability of MSCs has made it a challenge to advance into daily clinical application. According to this review, the key factors for this happening appear to be large variability in important factors, such as cell source, dosage, administration route, and timing of the administration. 


Since inconsistencies among these factors appear to affect the therapeutic value of MSCs, the authors call for standardization of procedures of MSC isolation and expansion in future clinical therapies. The authors also point out that the therapeutic potentials of MSCs are attributed to complex cellular and molecular mechanisms of action which require additional in-depth exploration for clinical application.

MSCs have been demonstrated to be an important source of stem cell therapies.  However, there is still a need for additional large-scale, randomized, blinded, and controlled trials to fully demonstrate the therapeutic benefits associated with MSCs.  As a result of this review, Fan et al. conclude that further clarification of the predominant mechanisms in different situations is an important step in improving the safety, efficacy, and outcomes of MSC-based therapies.

Source: (n.d.). Mechanisms underlying the protective effects of mesenchymal stem …. from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7223321/

What Are Mesenchymal Stem Cells?

What Are Mesenchymal Stem Cells?

Mesenchymal stem cells are a specific type of stem cell. MSCs have been the subject of many medical studies and extensive research. MSCs are essentially the raw materials that the body uses to generate new tissues. 

These versatile cells can differentiate or transform into many different forms of cells, including the following:

  • Skin cells
  • Corneal cells
  • Neural (brain) cells
  • Muscle tissue
  • Cartilage
  • Bone

Like many other types of cells and hormones, MSCs are found in lower concentrations as people age. The remaining mesenchymal stem cells also become less robust, which means that they are not as effective at replacing damaged tissues.

When they were originally discovered, MSCs were thought to have been present within the bone marrow only. However, researchers later discovered that this was not the case. MSCs can be retrieved from the following locations and utilized for stem cell therapy:

Bone Marrow Aspirate

When harvesting MSCs from bone marrow aspirate, a medical professional will retrieve MSCs from the bone marrow using a large syringe. While MSCs are technically present in all bone marrow, physicians typically retrieve aspirate from the hip. This large bone structure has the highest concentration of mesenchymal stem cells and is also the easiest spot to access.

Adipose Tissue

MSCs can also be sourced from adipose (fat) tissue. This method is much easier on the patient than using bone marrow aspirate. In addition, the adipose tissue may have a higher concentration of MSCs than the bone marrow.

Umbilical Cord Tissue

The third potential source of MSCs for therapeutic purposes is umbilical cord tissue. Specifically, medical professionals harvest Wharton’s Jelly, which is located within the umbilical cord. Wharton’s Jelly yields the largest concentration of MSCs and is from healthy C-Section births from screened and tested mothers. 

Potential of Mesenchymal Stem Cells

Due to their regenerative properties and low immunogenicity, mesenchymal stem cells have shown promising results in the treatment of various conditions. They have been investigated for their potential in orthopedics, neurology, cardiology, autoimmune diseases, and even cosmetic procedures. Researchers are exploring their use in conditions such as osteoarthritis, Parkinson’s disease, heart failure, multiple sclerosis, and wound healing, among others.

Moreover, mesenchymal stem cells have demonstrated an impressive safety profile in clinical studies. Their compatibility with the human body, along with minimal risk of rejection or adverse reactions, makes them an attractive option for therapeutic applications. In addition, mesenchymal stem cells can be sourced from various ethical and non-controversial sources, like a patient’s own adipose tissue.

What Are Mesenchymal Stem Cells

What Can MSCs Be Used For?

MSCs have the potential to reduce the symptoms of various ailments, including osteoarthritis, sports-related injuries, and neurodegenerative conditions

While the overall effectiveness of mesenchymal stem cells is still being studied, many patients experience benefits such as reduced pain, improved quality of life, and long-term relief of symptoms. However, the cumulative impact of MSCs will depend largely on the condition being treated and patient-specific factors.If you or a loved one are facing an autoimmune disorder, orthopedic condition, or neurodegenerative condition, mesenchymal stem cells may be a potential option to explore further. This approach has the potential to slow the progression of degenerative conditions or stimulate the body’s natural healing processes. If you would like to learn more contact us today!

Don’t let pain control your life, call us at (800) 531-0831

How Do Mesenchymal Stem Cells Repair?

How Do Mesenchymal Stem Cells Repair?

Over the last decade, the field of stem cell therapy has grown in research and awareness. This growth is thanks to mesenchymal stem cells (MSCs,) the type of cells most commonly explored for their powerful reparative properties. Medical professionals can harvest and concentrate these MSCs from multiple sources, making them more accessible. As a result, stem cells can be used as a form of regenerative medicine. This intervention offers potential benefits for patients suffering from neurodegenerative, orthopedic, and autoimmune conditions. This article will outline some basic information about MSCs and how Mesenchymal stem cells repair.

Basic Biology of MSCs

Stem cells are a unique type of cell. Unlike other cells, MSCs can divide into daughter cells and then transform into specialized cells such as those found in bone, brain matter, and soft tissue. Stem cells can be divided into two broad categories, embryonic and adult stem cells.

Adult stem cells are the primary type used in modern medical interventions. When adult stem cells were initially discovered, scientists believed they were only present in the bone marrow. 

While bone marrow aspirate can be an ideal source of stem cells, they are also present in adipose tissue, dental pulp, the kidneys, amniotic fluid, and the amniotic membrane. However, they are primarily harvested from adipose tissue, bone marrow, or umbilical cords.

MSCs’ Reparative Properties

Stem cells are naturally present in the human body. However, the concentration of these valuable cells is reduced as people age. As a result, older individuals typically have longer recovery times from injuries and are more prone to degenerative conditions.

Mesenchymal stem cells allow medical professionals to circumvent this natural degradation. They can harvest stem cells, concentrate them, and then administer them to a specific location, such as the site of an injury. Once administered, the stem cells will seek out inflammation and repair damaged tissue, thereby accelerating the natural healing process.

The Harvesting Process

Before they can be administered, stem cells must be harvested. Many patients opt for autologous stem cell therapy. This treatment involves the concentration of stem cells derived from the patient’s existing body tissues.

When preparing to harvest stem cells, the provider usually administers a local anesthetic. The provider will then harvest either bone marrow aspirate or adipose (fat) tissue depending on the preference and treatment plan. The stem cells are processed, concentrated, and administered back to the patient to targeted areas.

Stem cells have the potential to supplement the patient’s healing capabilities for six months to a year. This intervention can be utilized to treat many different conditions and may offer patients an alternative to traditional options or in conjunction with. If you would like to learn more about how Mesenchymal Stem Cells repair, contact us today!

The Effects of Mesenchymal Stem Cell-Derived Secretome in Parkinson’s Disease

The Effects of Mesenchymal Stem Cell-Derived Secretome in Parkinson’s Disease

Parkinson’s disease (PD) is a debilitating neurodegenerative disorder that currently affects nearly 6 million people worldwide and is currently the second most common neurological condition, behind only Alzheimer’s.

Although the exact cause of PD remains unclear, the condition is characterized by the gradual loss of nerve cells in the brain responsible for producing the neurotransmitter dopamine[1].    While no cure for PD currently exists, current therapeutic treatment approaches focus on improving quality of life but are not able to prevent or slow the progression of the disease.

Recent research has demonstrated positive effects of mesenchymal stem cell (MSC) transplantation that has been associated with secromes; noted beneficial effects include providing a self-regulated regenerative response that limits the area of lesions. Additionally, these MSC-derived secretomes compose soluble factors and encapsulated extravesicles (EV).  These EVs have been found to have a significant impact on physiological processes, including cell-to-cell communication.

Considering MSCs are readily available and easily isolated from a number of sources, including adipose tissue, umbilical cord Wharton’s Jelly, bone marrow, and dental pulp, these stem cells are thought to hold potential as a therapeutic approach to managing PD.

As part of this review, d’Angelo et al. highlight a number of studies demonstrating the potential of MSCs in improving a number of conditions and symptoms consistent with those demonstrated in PD. In these studies, animal models demonstrate improved motor behaviors and correction of functional impairment after transplantation of MSCs. 

The authors point out that further research exploring cell-free, therapeutic, personalized approaches for the different neurodegenerative diseases, including PD, is needed. 

d’Angelo et al. also note that, while MSC-derived secretomes have shown positive effects on neuronal cell survival, differentiation, and proliferation, further studies are needed to fully understand all of the bioactive molecules. 

Since MSC-derived secretomes are able to stimulate neurotrophic and neuronal survival pathways and appear to counteract neuronal death, they could potentially be a beneficial tool in future management and prevention efforts for a number of neurodegenerative conditions, including Parkinson’s disease, Alzheimer’s disease, and stroke.

Source:(2020, July 23). Insights into the Effects of Mesenchymal Stem Cell-Derived … – NCBI. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7432166/


[1] “Parkinsonfoundation.org -.” https://parkinsonfoundation.org/. Accessed 5 Oct. 2021.

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our team.

You have Successfully Subscribed!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!