Please note we will be closed 12-24-25 to 01-02-26 for the holidays. We will resume normal operations on January 5th.
From Injury to Recovery: How the Body Regenerates Itself

From Injury to Recovery: How the Body Regenerates Itself

The human body is an incredible self-healing machine. Every time you scrape your knee, strain a muscle, or even undergo surgery, a remarkable process begins, one where your body works tirelessly to repair and regenerate itself. While most people focus on the pain or downtime of an injury, the real story lies in the regeneration that follows.

When an injury occurs, your body immediately activates its immune response. Blood rushes to the site, bringing oxygen and immune cells to clean up damaged tissue and prevent infection. This is why inflammation and swelling are common in the first few hours or days after getting hurt, it’s not always a bad thing; it’s part of the healing process.

Next comes cellular regeneration. Depending on the tissue involved, your body sends out different types of cells to rebuild what was lost. Skin cells, for example, regenerate fairly quickly. Muscle and bone cells can take longer, but with proper care, rest, nutrition, and physical therapy, the body can often restore strength and function over time.

What’s fascinating is that your body also relies on stem cells during this process. These are unspecialized cells with the potential to become different cell types. They’re like nature’s repair crew, especially active in younger individuals but still present throughout life. In regenerative medicine, we often work with these natural mechanisms, using therapies that encourage or supplement the body’s own repair systems.

To support your body’s healing after an injury, it’s important to focus on:

  • Nutrition: A diet rich in protein, vitamins C and D, and minerals like zinc can help support tissue repair.
  • Movement (when appropriate): Gentle exercise or guided physical therapy can improve circulation and speed up recovery.
  • Rest: Overexertion can delay healing. Give your body time to do what it does best.

While minor injuries heal on their own, chronic damage or severe trauma may require advanced interventions. That’s where regenerative therapies like platelet-rich plasma (PRP) or stem cell treatments come into play, helping the body recover when it struggles to keep up on its own.

Sources:

National Institute of Arthritis and Musculoskeletal and Skin Diseases. How the Body Repairs Itself After Injury. https://www.niams.nih.gov/health-topics

Cleveland Clinic. Understanding the Healing Process. https://my.clevelandclinic.org/health/articles/10051-wound-healing

Mayo Clinic. Regenerative Medicine: What It Means for You. https://www.mayoclinic.org/tests-procedures/stem-cell-therapy/about/pac-20384686

The Role of Immune Modulation in Regenerative Medicine for Multiple Sclerosis

The Role of Immune Modulation in Regenerative Medicine for Multiple Sclerosis

Immune modulation plays a key role in regenerative medicine for multiple sclerosis (MS). At Stemedix, we focus on restoring immune balance to help reduce symptoms and slow disease progression. Regenerative medicine treatments, including stem cell therapies, target immune responses to decrease inflammation and support tissue repair. Since MS is an autoimmune condition, regulating immune function can help maintain quality of life and support overall health. According to the National Multiple Sclerosis Society, approximately 2.8 million people worldwide are living with MS, and around 1 million of those are in the United States. Effective immune modulation can help reduce relapses and manage symptoms, offering patients a better quality of life.

If you are considering regenerative medicine in Saint Petersburg, FL, Stemedix provides personalized treatment options designed to meet your needs. Our team is committed to guiding you through the potential benefits of regenerative medicine for MS, offering expert care every step of the way.

What is Immune Modulation?

Immune modulation is the process of adjusting the immune system’s response to either boost or suppress its activity, depending on the condition being treated. In regenerative medicine, it helps correct immune system imbalances in conditions like multiple sclerosis (MS). Instead of only addressing symptoms, this approach targets the underlying dysfunction. Regulating immune activity promotes balance, reduces inflammation, and supports tissue repair, offering a way to manage MS more effectively.

Immune System’s Role in Multiple Sclerosis

In multiple sclerosis (MS), the immune system wrongly attacks the myelin sheath that surrounds nerve fibers in the central nervous system. This causes nerve damage, inflammation, and a range of disabling symptoms. An estimated 85% of MS patients are initially diagnosed with relapsing-remitting MS (RRMS), which is characterized by clear relapses followed by periods of partial or complete recovery. Instead of protecting against harmful invaders, the immune system turns on the body’s own tissues.

Immune modulation through regenerative medicine works to correct this dysfunction by rebalancing the immune system, preventing further damage, and encouraging tissue repair. This approach not only alleviates symptoms but can also slow the progression of the disease, giving patients better chances for stability and improved function. By addressing the root cause, immune modulation helps the body heal naturally.

At Stemedix, we provide regenerative medicine in Saint Petersburg, FL, focusing on immune modulation to help manage MS. Our therapies aim to restore immune balance, promote tissue repair, and enhance your quality of life, offering a personalized path to long-term symptom relief and disease management.

The Science Behind Immune Modulation in Regenerative Medicine

Immune modulation in regenerative medicine often involves the use of stem cells, especially mesenchymal stem cells (MSCs). These cells help repair damaged tissues and regulate immune responses. In multiple sclerosis (MS), where the immune system attacks the body’s tissues, MSCs assist in restoring balance by reducing inflammation and encouraging tissue repair. This process helps prevent further immune attacks on the myelin sheath, providing relief and improving the overall condition of MS patients.

Stem Cells and Their Role in Immune Modulation

Mesenchymal stem cells (MSCs) have distinct characteristics that make them highly effective for immune modulation in multiple sclerosis (MS). They can release bioactive molecules that influence the immune system, reducing harmful immune responses and supporting tissue repair.

MSCs also reduce pro-inflammatory cytokines, which trigger inflammation, while promoting the activity of anti-inflammatory cells. This ability to balance the immune system and foster tissue regeneration makes stem cell therapy a vital component of regenerative medicine for MS.

For MS patients, stem cells not only help repair immune damage and restore balance but also ease symptoms like muscle pain, fatigue, and coordination problems. Instead of merely slowing disease progression, stem cell therapy provides a path to healing, improving overall health, and supporting long-term recovery.

Autologous vs. Allogeneic Stem Cell Therapy

In stem cell therapy for MS, there are two primary methods: autologous and allogeneic stem cell therapy. While each method offers unique benefits, both are designed to help modulate the immune system and promote healing.

Autologous Stem Cell Therapy: This approach uses the patient’s stem cells, which are collected and reintroduced into the body. Because these cells are from the patient, the risk of rejection is minimal, as the immune system typically recognizes them as “self.” However, the effectiveness may depend on the quality of the cells, especially in more advanced stages of the disease.

Allogeneic Stem Cell Therapy: Allogeneic stem cell therapy involves using stem cells from a donor. These cells are often more potent and can effectively modulate the immune system. They are also easily accessible, making them a good option for patients who cannot use their own cells. Although there is a slightly higher risk of immune rejection, improvements in stem cell processing have minimized this concern.

Both autologous and allogeneic stem cell therapies play an important role in regulating the immune system to treat MS. Each approach offers distinct benefits based on the patient’s specific condition, MS severity, and other health factors.

At Stemedix, we work closely with patients to determine the most suitable stem cell therapy based on their individual needs. Whether through autologous or allogeneic methods, we aim to use regenerative medicine treatments to restore immune balance, support healing, and enhance the quality of life for individuals living with multiple sclerosis.

How Immune Modulation Can Help Manage MS Symptoms

Immune modulation plays a key role in regenerative medicine treatments for multiple sclerosis (MS) by addressing the immune system dysfunction that causes the disease. Stem cell therapy and other immune-modulating treatments help restore immune balance, providing relief and slowing the progression of MS.

Slowing Disease Progression

Immune modulation plays a vital role in treating MS by slowing its progression. MS occurs when the immune system mistakenly attacks the myelin sheath, causing nerve damage and increased disability. Stem cell therapies, particularly mesenchymal stem cells, help regulate the immune response, reducing autoimmune attacks. This minimizes damage to the central nervous system and helps maintain nerve function.

By promoting tissue repair and supporting the body’s natural healing processes, stem cells reduce inflammation and prevent further deterioration. As a result, patients may experience fewer relapses and greater stability, leading to a better quality of life over time.

Reducing Inflammation

Inflammation is a key factor in the progression of MS symptoms, damaging the myelin sheath and causing issues like muscle spasms, pain, and cognitive difficulties. Stem cell therapy helps reduce inflammation by regulating the immune system, lowering pro-inflammatory cytokines, and activating anti-inflammatory cells.

By addressing the underlying cause of inflammation, stem cell therapy helps prevent further attacks on healthy tissue, reducing ongoing damage. Research indicates that MSCs can decrease levels of pro-inflammatory cytokines by up to 60%, significantly lowering inflammation and promoting tissue repair. This approach can ease symptoms such as muscle pain, spasticity, and neurological issues, ultimately improving mobility and lowering flare-up frequency. Many patients report notable relief, leading to an improved quality of life.

Symptom Control and Quality of Life

Immune modulation helps in controlling symptoms for MS patients by improving immune system function. Through regenerative medicine therapies, stem cells help address common MS symptoms such as muscle weakness, fatigue, and coordination issues. By restoring immune balance, these treatments prevent immune attacks that contribute to these symptoms, helping patients feel more energetic and in control.

As immune function improves, many patients notice an enhanced quality of life. With fewer symptoms, daily activities like walking, working, and spending time with loved ones become easier. This renewed independence can have a lasting positive impact, offering MS patients a better sense of well-being. Regenerative medicine supports individuals in regaining control over their health, enabling them to live more fully and manage their condition more effectively.

Why Choose Stemedix for Immune Modulation in MS Treatment?

Treating multiple sclerosis (MS) requires an approach that not only manages symptoms but also slows the progression of the disease. At Stemedix, we specialize in regenerative medicine in Saint Petersburg, FL, with a focus on immune modulation. Our therapies aim to address the underlying causes of MS while helping restore balance to the immune system. 

Our Expertise in Regenerative Medicine

At Stemedix, we bring extensive experience and expertise in regenerative medicine, with a strong focus on stem cell therapies for autoimmune conditions like multiple sclerosis (MS). Our team is dedicated to using advanced stem cell science and immune modulation techniques to develop personalized treatment plans that address the unique needs of each patient. We recognize the challenges MS presents and its impact on the immune system, which is why our approach combines innovation with evidence-based practices.

We offer autologous stem cell therapies, utilizing the patient’s own cells to support healing and regeneration. Our experienced team conducts a thorough evaluation of each patient to create a personalized treatment plan tailored to their unique needs. By focusing on immune modulation, we aim to reduce inflammation, slow disease progression, and promote tissue repair, helping patients manage MS more effectively.

Patient-Centered Approach

At Stemedix, we prioritize our patients by offering a patient-centered approach to treatment. We understand that each individual’s experience with MS is different, which is why we tailor our care to fit your specific medical history, disease progression, and treatment goals.

From the moment you contact us, our dedicated care coordinators collaborate with you to create a personalized treatment plan. They are with you every step of the way, addressing questions, providing guidance, and offering support throughout your treatment. Whether it’s helping with travel arrangements, finding accommodations, or just offering reassurance, our care coordinators are committed to making your experience as seamless and comfortable as possible.

Positive Patient Outcomes

Choosing Stemedix for your immune modulation treatment can lead to positive results, as many patients with MS have reported improvements after stem cell therapy. A systematic review published by the National Institutes of Health reported that over 70% of MS patients treated with stem cell therapy experienced a reduction in relapses and improved mobility within six months of treatment. They have experienced relief from symptoms like muscle pain, inflammation, coordination challenges, and fatigue, which has helped enhance their overall well-being.

These positive results highlight the potential of immune modulation in managing MS. By targeting the root causes of immune system dysfunction, our treatments work to restore balance, reduce the severity of symptoms, and prevent additional neurological damage. This not only helps lower the frequency of MS flare-ups but also promotes better overall health and well-being.

The success stories from our patients demonstrate the effectiveness of our regenerative therapies, showing that Stemedix offers more than just treatment—we provide a path to a better quality of life. With a personalized approach, advanced therapies, and compassionate support, Stemedix is committed to helping you effectively manage MS.

Choosing Stemedix means choosing a treatment plan customized to your needs, supported by a team of experts who are dedicated to delivering the best possible care. We’re here to guide you through every step of your treatment journey, giving you the best opportunity to manage MS and improve your quality of life.

Stemedix: Harnessing Immune Modulation to Manage Multiple Sclerosis

Immune modulation plays an important role in managing multiple sclerosis (MS), giving patients the opportunity to improve how they cope with the disease. By targeting and regulating the immune system, this approach can help slow disease progression, decrease inflammation, and reduce symptoms that make everyday life challenging for those living with MS.

Stem cell therapies, a key aspect of regenerative medicine, offer a pathway to long-term relief by repairing damaged tissues and restoring balance to the immune system. This approach addresses the underlying cause of MS—autoimmune dysfunction—by modulating immune responses to reduce attacks on the central nervous system. As a result, MS patients often experience fewer flare-ups, reduced disability, and an overall enhancement in their quality of life.

By offering tangible improvements, immune modulation through regenerative medicine has become an essential treatment strategy in the fight against Multiple Sclerosis. Stemedix, based in Saint Petersburg, FL, leads the way in providing these specialty therapies, offering personalized treatment plans designed to meet each patient’s unique needs.

Take the first step toward managing MS effectively with Stemedix. Contact us at (727) 456-8968 or email us at yourjourney@stemedix.com to learn more about how our regenerative medicine treatments can help you.

Advancements in Mesenchymal Stem Cell Applications for Traumatic Spinal Cord Injury: A Systematic Clinical Review

Advancements in Mesenchymal Stem Cell Applications for Traumatic Spinal Cord Injury: A Systematic Clinical Review

Spinal cord injury (SCI) can lead to lasting health challenges, impacting motor, sensory, and autonomic functions. Recovery from such injuries is particularly difficult due to the central nervous system’s limited ability to repair itself. As a result, scientists have turned to stem cell therapies, particularly mesenchymal stem cells (MSCs), as a potential solution to help treat traumatic spinal cord injuries (TSCI). 

In this review, Montoto-Meijide et al. explore the role of stem cell therapy in TSCI treatment, the safety and efficacy of MSCs, and the ongoing research aimed at improving these therapies.

Spinal Cord Injury and the Need for Effective Treatments

A spinal cord injury results from trauma that damages the spinal cord, leading to various degrees of paralysis and loss of sensory functions. Recovery is limited because the central nervous system does not regenerate easily, meaning that cells, myelin (which insulates nerve fibers), and neural connections are difficult to restore. Traditional treatments focus on alleviating symptoms and preventing further injury, but they do not offer a cure or promote regeneration. As a result, researchers are exploring stem cell therapies, which have shown potential in regenerating damaged tissues and promoting recovery.

An Overview of Mesenchymal Stem Cells (MSCs)

Stem cells are unique in that they can self-renew and differentiate into different types of cells. MSCs are a type of adult stem cell that can develop into various cell types, including bone, cartilage, muscle, and fat cells. MSCs are particularly promising in SCI treatment because of their ability to regenerate tissues and support healing. These cells have shown anti-inflammatory, anti-apoptotic (preventing cell death), and angiogenic (promoting new blood vessel growth) properties, all of which could aid in the healing of spinal cord injuries.

There are different types of stem cells, including embryonic and adult stem cells. Each source has its advantages and drawbacks. Bone marrow MSCs are the most commonly used in research and clinical trials, but adipose tissue and umbilical cord MSCs are gaining attention due to their availability and regenerative capabilities.

The Role of MSCs in Treating Spinal Cord Injuries

MSCs offer several benefits when applied to SCI treatment. They can promote tissue repair, reduce inflammation, and enhance the formation of new blood vessels. When introduced into an injured spinal cord, MSCs have been shown to:

  • Promote axonal (nerve fiber) regeneration
  • Reduce inflammation around the injury site
  • Support the survival of nerve cells
  • Enhance the formation of new blood vessels, aiding in tissue repair

These capabilities make MSCs an exciting avenue for research into TSCI treatment. Clinical trials and studies have shown that MSCs can lead to improvements in motor and sensory functions, although the extent of these improvements varies.

Clinical Evidence and Findings

A systematic review of clinical studies involving MSCs for TSCI was conducted, analyzing data from 22 studies, including 21 clinical trials. According to the authors, these findings suggest that MSC-based therapies can lead to improvements in sensory and motor functions, although these effects are often more pronounced in sensory functions than motor functions. Improvements in patients’ ASIA (American Spinal Injury Association) impairment scale grades have been reported, indicating positive outcomes for many individuals.

The safety of MSC therapies was also a key focus of these studies. Overall, MSC-based treatments were found to have a good safety profile, with no significant adverse effects such as death or tumor formation reported in clinical trials. Some studies did report mild side effects, such as temporary inflammation or mild discomfort, but these were generally short-lived and not severe.

The Future of MSC Therapy and Other Potential Treatments

MSC therapy represents one of the most promising areas of research for TSCI, but it is not the only potential treatment. Other therapies, including gene therapies, neurostimulation techniques, and tissue engineering approaches, are also being explored to address the challenges of spinal cord injury. The authors believe these approaches could complement MSC therapies or offer new avenues for healing and recovery.

For MSC therapy to become a standard treatment for TSCI, additional research is needed. Clinical trials with larger patient groups, longer follow-up periods, and standardized protocols will be necessary to better understand how MSCs can be used most effectively in treating spinal cord injuries. Additionally, researchers are exploring the best stem cell sources, optimal timing for treatment, and the ideal dosage to maximize benefits.

A Promising Future for Spinal Cord Injury Treatment

While spinal cord injuries are currently devastating and challenging to treat, stem cell therapy, particularly with MSCs, offers a hopeful future. Early studies suggest that MSCs can help promote tissue repair, reduce inflammation, and improve motor and sensory functions, although further research is needed to confirm these findings and explore long-term effects. The scientific community continues to make strides in understanding how MSCs and other therapies can help people with TSCI recover and regain functionality, offering hope for the future.

Source: Montoto-Meijide R, Meijide-Faílde R, Díaz-Prado SM, Montoto-Marqués A. Mesenchymal Stem Cell Therapy in Traumatic Spinal Cord Injury: A Systematic Review. Int J Mol Sci. 2023 Jul 20;24(14):11719. doi: 10.3390/ijms241411719. PMID: 37511478; PMCID: PMC10380897.

Links Between Sex Hormone Ratios and Metabolic Syndrome and Inflammation in U.S. Adult Men and Women

Links Between Sex Hormone Ratios and Metabolic Syndrome and Inflammation in U.S. Adult Men and Women

Metabolic syndrome (MS) is a group of conditions that occur together, raising the risk for cardiovascular disease (CVD) in men and women and is associated with a number of diseases including sleep apnea, liver disease, polycystic ovary syndrome (PCOS), and hormone-sensitive cancers. 

The prevalence of metabolic syndrome varies by region and population, but it is estimated to affect around 20-25% of the global adult population. Currently, it’s estimated that approximately 1 billion people worldwide may have metabolic syndrome. 

Additionally, sex hormones play a critical role in sex differences and cardiovascular disease risk associated with MS.  However, the relationship between sex hormone rations and metabolic and inflammatory markers are unclear according to sex and age differences.  

As part of this study, Dubey et al. evaluated the associations of sex hormone ratios with MS and inflammation among males and females. 

Currently CVD accounts for 33%-40% of all mortality in the United States and European Union. Men are more likely to be at risk for CVD than women, however the risk of women developing CVD increases drastically after menopause.   

According to the authors, this study found that the Free Estradiol Index (FEI) is a more reliable indicator of metabolic syndrome (MS) and high C-reactive protein (CRP) levels than other hormone indexes in men across all age groups. For women over the age of 50, FEI is also strongly associated with these conditions. However, in women under 50, the Free Androgen Index (FAI) is more closely linked to MS and high CRP levels. 

Based on these findings, Dubey et al. recommend that doctors regularly check these hormone ratios to identify individuals at risk for cardiovascular disease (CVD) and to manage MS and inflammation early.

In men, FEI emerged as the strongest predictor of MS and high CRP levels, regardless of age. This finding aligned with the limited existing research primarily focusing on older men.  The authors point out that this study is among the first to demonstrate this association in younger men. For women aged 50 and older, a high FEI was consistently linked to adverse metabolic and inflammatory profiles. Emerging studies continue to support these findings and suggest that managing FEI levels could help reduce the risk of MS and related inflammatory conditions in older women.

For younger women under 50, FAI was identified as the most critical factor associated with MS and high CRP. The study’s findings in this area supports other research indicating that higher androgen levels are a common feature in women with MS before menopause. 

In both men and women, low levels of Sex Hormone-Binding Globulin (SHBG) were linked to higher rates of MS and CRP, indicating that SHBG is an important marker of metabolic health across all ages and sexes.

The results of this study suggest that regular evaluation of sex hormone ratios, particularly FEI and FAI, is crucial for assessing and managing the risk of MS and inflammation. The authors point out that this approach could help doctors identify individuals at risk for CVD and develop early intervention strategies. However, it is important to note that Dubey et al’s study design does not allow for the establishment of a cause-and-effect relationship. Additionally, hormone levels were measured only once, which may not accurately reflect long-term exposure.

The authors conclude the findings of this study highlight the importance of monitoring sex hormone ratios to better understand and manage metabolic and inflammatory conditions. The authors also call for additional research, especially long-term studies, to confirm these findings and to further explore the role of these hormone ratios in different age groups and sexes.

Source: Dubey P, Singh V, Venishetty N, Trivedi M, Reddy SY, Lakshmanaswamy R, Dwivedi AK. Associations of sex hormone ratios with metabolic syndrome and inflammation in US adult men and women. Front Endocrinol (Lausanne). 2024 Apr 10;15:1384603. doi: 10.3389/fendo.2024.1384603. PMID: 38660513; PMCID: PMC11039964.

Collagen: What It Is, What It Does, and How to Boost It Naturally

Collagen: What It Is, What It Does, and How to Boost It Naturally

Collagen is often mentioned in skincare and wellness circles, but it’s far more than just a beauty buzzword. As the most abundant protein in the human body, collagen plays a vital role in maintaining the strength, elasticity, and structure of your skin, joints, bones, and connective tissues.

Understanding collagen’s role in your health can help you make informed choices to support your body’s natural healing and longevity.

What Is Collagen?

Collagen is a structural protein that acts like a scaffold, holding your body together. It’s found in your skin, ligaments, tendons, cartilage, and even blood vessels. There are several types of collagen, but Types I, II, and III are the most common in the human body.

Unfortunately, collagen production declines naturally with age; starting in your mid-20s and this contributes to signs of aging such as wrinkles, joint stiffness, and slower recovery after injury.

Why Collagen Matters

Skin Health: Collagen gives skin its firmness and elasticity. Loss of collagen leads to sagging and fine lines.

Joint and Bone Support: Collagen provides cushioning and structure to joints and bones, helping prevent pain and degeneration.

Wound Healing and Tissue Repair: Collagen plays a crucial role in tissue regeneration, making it central to both injury recovery and regenerative therapies.


How to Boost Collagen Naturally:

  • Eat Collagen-Rich and Collagen-Boosting Foods
    Bone broth, chicken skin, fish, and egg whites are natural sources of collagen. Vitamin C-rich foods (like oranges, bell peppers, and strawberries) help the body synthesize new collagen.
  • Protect Your Skin from UV Damage
    UV exposure breaks down collagen in the skin. Daily sunscreen use is one of the simplest ways to slow collagen loss.
  • Stay Active
    Regular movement stimulates circulation and nutrient delivery to tissues, helping support collagen maintenance and joint health.
  • Get Enough Sleep
    Your body does most of its repair work — including collagen production — while you sleep. Prioritizing rest helps ensure your skin and tissues can recover and renew.
  • Consider Supplements
    Hydrolyzed collagen supplements (also called collagen peptides) are easily absorbed by the body and may help support skin elasticity and joint comfort, especially as natural production slows with age.


The Regenerative Perspective

At Stemedix, we recognize collagen’s foundational role in healing and structural integrity. Whether through nutrition, lifestyle, or regenerative therapies, supporting your body’s natural collagen production can lead to better outcomes for joint health, injury recovery, and overall vitality.


Sources

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our team.

You have Successfully Subscribed!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!