Traumatic brain injury (TBI) is a major cause of disability worldwide, affecting over 50 million people each year. It can result from accidents, falls, sports injuries, or violent impacts. TBI can lead to immediate problems like loss of consciousness, confusion, and memory difficulties, and long-term consequences such as cognitive deficits, physical disabilities, speech challenges, and mood disorders. 

In addition, TBI is associated with an increased risk of developing neurodegenerative diseases like Alzheimer’s and Parkinson’s disease. Traditional treatments focus on stabilizing patients and reducing immediate damage, but they rarely restore lost brain function or prevent chronic complications.

As part of this review, Zhang et al. outline the key pathological processes of (TBI) and the mechanisms by which mesenchymal stem cell (MSC) therapy may provide treatment. The authors also highlight current research progress, identify major limitations, and emphasize the promising potential of MSC-based approaches for TBI.

Complexity of Injury Mechanisms

TBI involves both primary and secondary injury mechanisms. Primary injury occurs at the time of trauma and involves direct mechanical damage to brain tissue. Secondary injury develops over hours to days and includes inflammation, oxidative stress, mitochondrial dysfunction, and neuronal apoptosis. These processes are partly driven by the disruption of the blood–brain barrier, allowing immune cells to enter the brain and trigger a persistent inflammatory response. Understanding these mechanisms is crucial because interventions during the secondary phase may reduce neuron death and improve recovery outcomes.

Consequences of TBI

Secondary injury after TBI can trigger widespread cellular and tissue damage. Inflammation, oxidative stress, and apoptosis disrupt brain function and can worsen physical and cognitive outcomes. Long-term consequences may include memory loss, reduced motor control, difficulty speaking, and emotional changes. Damage to neurons and supporting cells, such as astrocytes and microglia, contributes to these deficits. The adult brain has limited capacity to repair itself, which makes TBI particularly challenging to treat.

Promise of Mesenchymal Stromal Cell Therapy

MSCs are multipotent stem cells found in bone marrow, fat tissue, skeletal muscle, synovial membrane, and peripheral blood. They have the ability to self-renew, differentiate into multiple cell types, and migrate to sites of injury. MSCs offer potential treatment for TBI through multiple mechanisms. They promote healing not just by replacing damaged cells but also through paracrine signaling, the release of extracellular vesicles (EVs) such as exosomes, and direct cell–cell interactions. These vesicles carry proteins, RNA, and other molecules that cross the blood–brain barrier to reduce inflammation, stimulate neuron growth, and protect surviving brain cells. Clinical studies have shown that MSC therapy can improve motor and cognitive recovery in patients with neurological injuries, suggesting they are a promising regenerative therapy for TBI.

Targeting Mitochondrial Dysfunction

Mitochondria are the energy-producing organelles in cells, and damage to them is a major feature of secondary TBI injury. Dysfunctional mitochondria trigger oxidative stress, apoptosis, and energy deficits that worsen brain damage. MSCs can transfer healthy mitochondria to injured neurons and other cells through tunneling nanotubes, extracellular vesicles, and other mechanisms. This transfer restores cellular energy production, reduces inflammation, and prevents cell death. Mitochondrial transfer also regulates immune cells, shifting macrophages toward a healing, anti-inflammatory state. Research shows that this process improves neuron survival, angiogenesis, and overall functional recovery of brain tissue.

Combating Oxidative Stress

Excessive reactive oxygen species (ROS) produced after TBI can damage DNA, proteins, and cell membranes, leading to further cell death. MSCs counteract oxidative stress through multiple mechanisms. They enhance antioxidant activity, increase protective proteins like Bcl-2, and reduce harmful molecules. Exosomes from MSCs carry additional protective factors that restore ATP production and activate cell survival pathways. Studies in animal models show that MSCs and their exosomes help preserve neurons, reduce injury progression, and improve recovery, offering advantages over treatments that address only one aspect of oxidative damage.

Reducing Neuroinflammation

Neuroinflammation is a key driver of secondary injury in TBI. Damage to the blood–brain barrier allows immune cells to enter the brain, activating microglia and astrocytes. These glial cells release inflammatory cytokines such as IL-1, IL-6, and TNF-α, attracting more immune cells and extending inflammation from the acute to chronic phase. MSCs help regulate the inflammatory environment by releasing anti-inflammatory factors, promoting microglial polarization to the M2 healing phenotype, and reducing the infiltration of peripheral immune cells. Studies show that MSC therapy lowers levels of proinflammatory molecules, restores blood–brain barrier integrity, reduces cerebral edema, and improves motor and cognitive function. Combination treatments with drugs that enhance anti-inflammatory effects have shown even greater improvements.

Preventing Apoptosis and Supporting Neurons

Neuronal apoptosis is a hallmark of secondary TBI injury and contributes to long-term functional deficits. MSCs help prevent apoptosis by delivering neurotrophic factors, regulating pro- and anti-apoptotic proteins, and reducing caspase activation. Their exosomes protect neurons, preserve white matter, and support glial cells. MSCs also stimulate angiogenesis, providing oxygen and nutrients to surviving neurons, which further supports tissue repair. These effects collectively improve neuron survival, facilitate functional recovery, and help restore brain physiology.

Comparison with Traditional Therapies

Traditional TBI treatments, such as surgery, hypothermia, and medications, primarily aim to stabilize patients and manage symptoms. While these approaches are necessary to prevent immediate harm, they often do not repair damaged brain tissue or restore neurological function. MSC therapy offers a broader approach by targeting mitochondrial dysfunction, oxidative stress, inflammation, and apoptosis. Unlike traditional therapies, MSCs promote tissue regeneration and functional recovery. However, challenges remain, including potential contamination during culture, immune responses, and the theoretical risk of promoting tumor growth. Proper sourcing, handling, and delivery of MSCs are critical to maximizing safety and effectiveness.

Future Directions and Clinical Potential

MSC therapy holds great promise for TBI treatment, but additional research is needed to optimize outcomes. Scientists are investigating the best sources of MSCs, ideal timing for administration, most effective delivery methods, and appropriate dosages. Genetically modified MSCs may enhance therapeutic potential, and exosome-based treatments could provide safer, cell-free alternatives. Combination therapies with pharmacological agents or physical interventions may further improve results. Ongoing preclinical and clinical trials will help determine how MSCs can best be used to repair brain tissue and restore function in TBI patients.

The Potential of MSC Therapy for Traumatic Brain Injury

Traumatic brain injury is a complex condition with high rates of long-term disability. Secondary injury mechanisms such as oxidative stress, neuroinflammation, mitochondrial dysfunction, and apoptosis contribute to the progression of brain damage. MSCs offer a multi-targeted approach to treatment by providing mitochondrial support, antioxidant protection, anti-inflammatory effects, and anti-apoptotic benefits. While challenges remain regarding safety, delivery, and standardization, MSCs and their exosomes represent a promising frontier in regenerative medicine. 

With continued research and clinical development, Zhang et al. concluded that MSC therapy has the potential to improve neurological outcomes and quality of life for millions of patients worldwide.


Source: Zhang K, Jiang Y, Wang B, Li T, Shang D, Zhang X. Mesenchymal Stem Cell Therapy: A Potential Treatment Targeting Pathological Manifestations of Traumatic Brain Injury. Oxid Med Cell Longev. 2022 Jun 15;2022:4645021. doi: 10.1155/2022/4645021. PMID: 35757508; PMCID: PMC9217616.

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our team.

You have Successfully Subscribed!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!