A technique called hyperbaric oxygen therapy (HBOT) has been shown to help patients with traumatic brain injury (TBI) who are suffering from a chronic neurological injury. HBOT appears to confer its benefits to these patients by increasing the neuroplasticity in the brain – or, in other words, by making it easier for the brain to re-wire itself. When the brain has a higher degree of neuroplasticity, it is easier to recover from neurological injuries because the brain can find ways to re-wire and restore functions that were lost due to damage to brain tissue.
A new study, published in Frontiers in Human Neuroscience, investigated the effects of HBOT on prolonged post-concussion syndrome (PPCS) that occurs as a result of TBI. The researchers used imaging strategies to monitor the brains of 15 patients with PPCS and evaluated the patients with tests of cognition. The researchers gave each patient 60 treatments with HBOT. The treatments were initiated anywhere from 6 months to 27 years after the patients had sustained their injuries.
Using imaging techniques called Dynamic Susceptibility Contrast-Enhanced and Diffusion Tensor Imaging (DTI) MR sequences, the researchers observed that HBOT increased blood flow and volume in the brain and that it led to the generation of new blood vessels. Using various cognitive tests, the researchers also found that HBOT improved memory, information processing speed, and executive functions.
Based on these findings, the researchers concluded that HBOT is beneficial for patients with TBI by inducing neuroplasticity in the brain, improving the integrity of microstructures of both white and gray matter within the brain, and allowing for the regeneration of nerve fibers. Future research will help clarify further benefits of HBOT and how the brain responds to this treatment.
Chronic obstructive pulmonary disease (COPD) is an incurable lung disorder which makes it difficult to breathe. It includes chronic bronchitis and emphysema and is characterized by a persistent cough and mucus production. While it is not curable, it can be managed through ongoing treatment to provide patients with effective symptom control and good quality of life. There are a few key types of lung damage that can occur in COPD:
With emphysema, the air sacs (alveoli) in the lungs are compromised. The walls of alveoli are stretched and actually cause the lungs to expand, which makes it more difficult for air to move in and out.
In chronic bronchitis, the bronchial tubes are constantly inflamed, which limits airflow. In specific, the cilia (hair-like structures in the airways) become damaged. The airway can also become swollen and clogged.
Refractory asthma is also marked by swelling of the bronchial airways. Even medications cannot reverse the swelling.
Here, we examine a form of COPD treatment which has been gaining attention recently.
Blood-Derived PRP
Blood-derived platelet-rich plasma (PRP) therapy is increasingly being used to treat a broad range of conditions, including sports injuries and arthritis. The procedure is performed via intravenous blood extraction. After the blood cells are harvested, they are processed, and the platelets are separated from other blood components. With the higher concentration of platelets, the treated blood is then reinserted into the patient with the hopes of reducing inflammation and speeding up the body’s healing process.
The problem with blood-derived PRP is that the evidence illustrating the effectiveness of this treatment for COPD is lacking. While some studies have been performed and suggest the treatment’s ability to support hair regrowth and reduce osteoarthritis pain, the lack of definitive proof supporting PRP therapy’s ability to make a noticeable impact on COPD has spurred criticism.
A Better Alternative
Stem cell PRP takes PRP injections a step further by mixing platelets with stem cells to treat the structural airway issues present in all forms of COPD. In numerous studies, this approach has shown promise. Coupling blood derivatives with stem cell therapy have proven effective in tissue regeneration in areas like the knee and gums, for instance. In one report, researchers concluded that the therapy “offers a promising therapeutic approach that has shown potential in diverse degenerative lung diseases” based on findings across 15 separate studies.
Through traditional PRP treatment, platelets become 5-10 times more concentrated, or 150,000- 450,000 platelets per microliter. When combined with stem cells, however, they become supercharged and platelet counts are much higher. Because research suggests that the therapeutic level for platelet count should be closer to 1,000,000 per cubic milliliter, PRP and stem cells are far more powerful than PRP alone. Moreover, PRP therapy is derived from whole blood alone, meaning it contains very few CD34+ cells – the cells commonly found in the umbilical cord and bone marrow which have the greatest self-renewal capacity – if any.
With stem cell therapy for COPD, it is guaranteed that these cells will be introduced into the body in a higher concentration. They can then promote the healing process, replacing countless cells throughout the entire body, including the lung tissue.
For most conditions, stem cells can be administered into the bloodstream (into an artery or vein). However, patients who wish to have stem cell treatment for neurological conditions are faced with overcoming the blood-brain barrier. As the name indicates, the blood-brain barrier is a barrier between the bloodstream in the central nervous system, which includes the brain and spinal cord. Oxygen and some small molecules can cross the blood-brain barrier, but other molecules and cells cannot. Thus, to treat neurological conditions, stem cells must somehow reach the brain tissue. There are two ways that will accomplish this and they are through the intranasal and intrathecal methods. We want to show the comparisons of these two methods so you can determine which route is right for you.
Intranasal Method:
While virtually all the central nervous system is protected by the blood-brain barrier, there is a small patch in the top of the nasal cavity with no effective barrier. This patch is how we smell things so effectively, but it also can be used as a passageway for the stem cells to reach the brain tissue. Using the intranasal method, the physician numbs the area with a local anesthetic and injects stem cells into the passageway using a thin needle. General anesthesia is not required, and patients can leave soon after the procedure—no hospital stay is required. Intranasally is an excellent way of administering stem cells to the nerves along the olfactory pathway (the nerves involved in the sense of smell). Specifically, intranasal stem cell administration can be used to treat patients with Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and frontal lobe dementia, as well as other neurological conditions.
Intrathecal Method:
The intrathecal method delivers the stem cell into the cerebral spinal fluid or CSF. Intrathecal administration is quite like a spinal tap (a.k.a. lumbar puncture) though instead of drawing out a sample of CSF, physicians inject stem cells into the CSF. And just like a spinal tap, the physician numbs the area with a local anesthetic and then inserts a small needle into the lower back (the patient lies in the fetal position). The stem cells are then able to cross the blood-brain barrier by being placed directly in the CFS since the CSF naturally circulates around the brain and spinal cord. This also allows the stem cells to reach a wide range of nerve cells throughout the central nervous system. Ideally, the intrathecal method is ideal for most neurological conditions, especially for those that affect areas near CSF such as Parkinson’s disease, multiple sclerosis, Alzheimer’s disease and Post-stroke.
Comparing both methods:
Your stem cell physician will help determine and suggest which route is more optimal for your specific condition and needs. In general, the intrathecal method is more commonly suggested for neurological conditions since it allows the stem cells to be widely distributed across the brain tissues, and especially conditions relative to the spinal cord. The intranasal approach is more custom for conditions affecting the frontal or temporal lobes of the brain or if there are concerns of successful administration of the stem cells into the lumbar space with the intrathecal approach. In certain cases, patients may be able to choose one approach over the other if they have a preference. Overall, both will cross over the blood-brain barrier but the decision of which is best must be determined based on a few factors; safety, preference, and optimal opportunity.
Hyperbaric Oxygen Therapy (HBOT) is a powerful treatment used to aid in the healing of many conditions and illnesses. Individuals who undergo this unique form of therapy sit in a controlled environment, called a chamber, with higher levels of oxygen and increased atmospheric pressure. Together, the pressure and high oxygen concentration help to oxygenate the blood, which can facilitate cellular regeneration, healing of wounds, and decreases in inflammation levels. The therapy can treat burns and sores, concussions, sports injuries, and decompression syndrome, among other ailments.
In fact, the benefits of HBOT span so far and wide that some individuals have even sought to bring the treatment into their own homes. This is done using soft HBOT chambers, which are different from the hard medical-grade chambers that are operated by professionals in treatment centers. Here, we walk you through the key differences between hard and soft chambers to help you make informed decisions about your treatment options.
Hard HBOT Chambers
To understand the most critical differences among hard and soft chambers, it’s important to revisit the two key principles of HBOT: oxygen and pressure. Combining these two factors to facilitate an environment in which expedited healing can take place is what makes this form of therapy so effective. In hard chambers, the air features 100% medical-grade oxygen and is commonly pressurized to a maximum atmospheric absolute (ATA) of up to 3.0, or a depth of 66 feet. They are specifically built to achieve pressures for therapeutic purposes, and some can go to 6.0 ATA.
The immense level of healing achieved through these systems is backed by thousands of clinical studies and has even been shown to aid in bone and tissue regrowth. Conditions that have shown benefit with HBOT in conjunction with stem cell therapy are Multiple Sclerosis, Traumatic Brain Injury, Post-Stroke, and Sports Injuries to name a few. This is because hard chamber HBOT can mobilize stem cells (CD34+ pluripotent cells) responsible for the regrowth of significantly wounded areas. Hard HBOT chambers can also kill harmful bacteria.
Because these hard-sided chambers are found only in medical or therapy centers and controlled by trained professionals, the risks of breathing contaminated or polluted air are mitigated. In addition, hard chambers meet the American Society of Mechanical Engineers Pressure Vessels for Human Occupancy (ASME-PVHO-1) standard. However, because it is illegal to purchase medical-grade oxygen without a prescription, this form of therapy can only be received under the care of specialists.
Soft-Sided HBOT Chambers
Unlike hard-sided chambers, soft-sided HBOT chambers are portable and can be purchased for home use. They typically feature a steel frame with a zipped inflatable chamber. Oftentimes, they are used as a temporary treatment for divers and mountain climbers suffering from decompression syndrome and altitude sickness when they are already in route to receive HBOT in a hard chamber. On the surface, soft HBOT chambers might seem like a convenient alternative to receiving therapy at a treatment center. Yet, research shows that these solutions are ineffective for achieving the same level of benefits provided by hard chambers, and in fact, using them can put patients at risk.
Let’s return to the two components needed for effective HBOT: oxygen and pressure. While the air in hard chambers is 100% medical-grade oxygen, soft chambers used at home feature regular ambient air, with just 21% oxygen. Plus, they can only be pressurized to 1.3 ATA, or a depth of roughly eight feet. This lower pressure level is simply not enough to facilitate healing. Used in conjunction with 100% oxygen (which again, can only be administered by medical professionals), it can be used as a temporary treatment for altitude sickness and decompression syndrome – but that is all the FDA approves soft-sided HBOT chambers for. Therefore, they serve little purpose in the home setting. In fact, it isn’t recommended for soft chambers to be used for any type of healing outside of treating the two conditions described above. Not only are the oxygen and pressure levels too low to achieve treatment, but the environment can promote the growth of undesirable aerobic bacteria. Soft chambers do not meet the ASME PVHO-1, have not been proven to promote healing through clinical research, and may even pose risks of breathing in polluted or contaminated air.
Ultimately, soft chambers may provide medical benefits in very specific circumstances, but hard chambers are the only vessel for HBOT that can support all types of healing by oxygenating the blood and stimulating stem cells. When practiced under the care of trained professionals, hard chamber HBOT poses few minimal risks and can make a significant difference in improving an individual’s quality of life.
This website and its contents are not intended to treat, cure, diagnose, or prevent any disease. Stemedix, Inc. shall not be held liable for the medical claims made by patient testimonials or videos. They are not to be viewed as a guarantee for each individual. The efficacy for some products presented have not been confirmed by the Food and Drug Administration (FDA).
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
Subscribe To Our Newsletter
Join our mailing list to receive the latest news and updates from our team.
You have Successfully Subscribed!
Request Information Packet
We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!
Thanks for your interest!
Request Information Packet
We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!
Thanks for your interest!
Request Information Packet
We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!
Thanks for your interest!
Request Information Packet
We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!
Thanks for your interest!
Request Information Packet
We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!
Thanks for your interest!
Request Information Packet
We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!
Thanks for your interest!
Request Information Packet
We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!
Thanks for your interest!
Request Information Packet
We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!
Thanks for your interest!
Request Information Packet
We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!
Thanks for your interest!
Request Information Packet
We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!
Thanks for your interest!
Request Information Packet
We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!
Thanks for your interest!
Request Information Packet
We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!