7 Ways Hyperbaric Oxygen Treatment Could Improve Your Health

7 Ways Hyperbaric Oxygen Treatment Could Improve Your Health

As 15 million Americans struggle with a chronic respiratory disease, it’s clear that breathing is difficult for many people for a variety of reasons. When you’re dealing with a chronic disease or trying to recover from an illness, hyperbaric treatment is a great way to get enough oxygen to your body. You can even experience a detox treatment with the help of hyperbaric oxygen treatment as oxygen assists in all the body’s processes.

Here are five reasons you should try hyperbaric oxygen treatment when you’re struggling with many physical afflictions.

Great For Detoxing

If you want to help foster your body’s natural cleansing abilities, then hyperbaric oxygen treatment is the way to go. The first benefits you notice is how much cleaner your body feels and how it helps your immune system. Oxygen therapy has long been recognized as a way to help clean and detox your body. As more people move to urban environments, they’re exposed to all manner of pollutants and environmental problems. When you try out oxygen treatments, you’ll feel like you just spent a week out in nature.

Detoxing the body from the poisons that we absorb is a challenge. The heavy metal poisoning that an increased number of people deal with is hard for the body to detox itself from. However, as more oxygen moves throughout your body and brain, you immediately feel healthier. Your brain needs all the help it can get to regulate and repair tissues. This helps to boost your immune system and your overall health. You’ll notice the difference almost immediately.

Boost Your Immune System

Our immune systems are fragile, especially during winter months when it seems like colds and flu strains are on every surface. When you boost your immune system with the help of hyperbaric oxygen, you’ll be able to keep bad bacteria from growing. If that bacteria can’t get ahold of your immune system, you’ll stay healthier all throughout the year. The growth of yeast and certain viruses is kept at bay with the help of hyperbaric oxygen. There are lots of diseases that have been stifled with hyperbaric oxygen.

Those diseases that take a toll on your immune system, from hepatitis to shingles and Lyme disease are held at arm’s length with hyperbaric oxygen. If you suffer from any of these ailments, you’ll notice the symptoms will be limited. Using this oxygen treatment, you can ensure that your systems are reduced dramatically so long as you keep your treatments up.

Heal Quicker

If you’re dealing with any wounds or have been through major surgery, it’s hard to recover quickly. When you’re weak, your body tends to heal more quickly and when you’re healing, you’re weaker. It’s a lose-lose situation without the help of the right treatment.

Thankfully, oxygen therapy is able to help to heal wounds that range from diabetic problems, skin grafts, or even traumatic injuries. By moving oxygen around your body and controlling your body’s supply of blood you get help where you need it and heal more efficiently. It’s even been shown to help with injuries related to MS, dementia, Parkinson’s, and epilepsy. Our brain is sensitive to having too little oxygen. It’s even triggered by having access to too much, which can make us feel lightheaded. When you increase the oxygen under controlled conditions, you’ll notice that your problems will be alleviated more quickly than ever.

Deal with Nerve Problems

When you’re struggling with nerve issues, it’s hard to find relief. Nerve pain gets under the skin and tears at your psyche in some respects. If you can’t get relief, then you’re going to have painful attacks that feel like they have no end. For people who have scar tissue, getting feeling back or helping alleviate pain is their focus. Some types of neuropathy can be helped with hyperbaric oxygen. For sufferers of fibromyalgia, a deeply painful nerve condition, hyperbaric oxygen treatment is a way out of that discomfort.

By stimulating conductive fibers on nerves, the body regulates its pain. When you use oxygen to help take care of that, then you’re able to treat it on your conditions. You’ll feel better quickly and be free of unnecessary discomfort that comes with dealing with a nerve problem.

Increase Your Energy

During a vigorous workout, it’s possible to feel less stressed or sore after if you have enough oxygen. When lots of oxygen is pumped into the room or when the person exercising wears a hyperbaric device, they’ll find they can move faster for longer. Oxygen therapy has taken this concept somewhere that works for everyday life. When people leave hyperbaric oxygen therapy, they report feeling more refreshed and awake than before. They note that their mind and body feel more comfortable and sharper. They’ll be alert and awake, with more energy than they had before the treatment. An increasing number of spas offer this treatment as a way to relax and to relieve stress. If you try this after a massage or in addition to other treatments, you could find drastic changes to your energy.

Some people report that they feel more focused after treatment. Because oxygen is vital for brain function and cellular growth, our minds are sharper, more focused, and functioning at a higher level. Reaction times drop and our bodies feel much more connected to the tasks at hand rather than fatigued or removed.

Hyperbaric Treatment Has So Many Benefits

If you haven’t considered hyperbaric treatment for getting oxygen to the essential parts of your body and brain that need it. Hyperbaric oxygen treatment has given so many people the ability to feel better, more energetic, and to heal from afflictions that you should try it ASAP.

To learn more about the potential for hyperbaric treatment to help you, check out our latest posts.

Mesenchymal Stromal Cells Shown to be Safe in Multiple Sclerosis

Mesenchymal Stromal Cells Shown to be Safe in Multiple Sclerosis

Of all conditions that affect the central nervous system, Multiple Sclerosis (MS) is the most common in young adults. The severity of multiple sclerosis varies considerably and can affect almost every organ system in the body affecting eyesight, bowel function, bladder function, and sexual function. Multiple sclerosis may cause cognitive problems, depression, seizures, fatigue, and pain. Most people with multiple sclerosis will have a relapsing-remitting course, which means they will have periods of relative health punctuated by flare-ups of the condition. About one out of ten people with the condition will have primary progressive multiple sclerosis, which means once the disease occurs it almost constantly causes symptoms and progresses over time.

Multiple sclerosis appears to be an inflammatory condition that affects the covering around nerves. During acute flareups/exacerbations, physicians usually prescribe a powerful steroid medication such as methylprednisolone to combat the inflammation. Patients with multiple sclerosis generally always require some sort of treatment to help manage their immune system. No fewer than 15 immune modulating treatments have been used to treat multiple sclerosis, none of which provides a cure. As such, researchers are seeking new and innovative ways to treat this potentially debilitating condition.

Researchers at the Tisch Multiple Sclerosis Research Center of New York chose to focus their research efforts on a particular type of stem cell, namely bone marrow-derived mesenchymal stromal cells. The researchers harvested these cells from the patients themselves (autologous stem cells). Then, in their laboratory, scientists used various means to prompt the cells to become neural progenitors. A neural progenitor cell is a cell that can become any of the three main types of brain cells: neurons, astrocytes, or oligodendrocytes. Incidentally, oligodendrocytes are believed to be most affected in multiple sclerosis.

Harris and co-authors at the Tisch Center enrolled six patients with progressive multiple sclerosis. These six patients had failed to find relief from other conventional multiple sclerosis treatments. The researchers provided between 2 to 5 infusions of neural progenitor cells into the spinal fluid. The multiple sclerosis patients treated with the cells tolerated the treatment very well. No serious adverse events occurred, nor were there any safety concerns during treatment. Impressively, four of the six patients—for whom no other multiple sclerosis treatment worked—had a measurable clinical improvement after stem cell treatment.

Based on the results of this clinical study, the scientists concluded that neural progenitor cells created from autologous mesenchymal stromal cells were safe to use in patients with primary progressive multiple sclerosis. Moreover, the beneficial effect witnessed in two-thirds of treated patients suggests that these cells may be able to help patients with even the most severe and difficult-to-treat forms of multiple sclerosis. Of course, additional testing is required before this treatment becomes commonplace, but the results of this first-in-human clinical study are extremely encouraging.

 

Reference: Harris et al. (2016). Clinical safety of intrathecal administration of mesenchymal stromal cell-derived neural progenitors in multiple sclerosis. Cytotherapy. 2016 Dec;18(12):1476-1482.

Stem Cells Plus Hyaluronic Acid Repair Joint Cartilage Defects

Stem Cells Plus Hyaluronic Acid Repair Joint Cartilage Defects

Cartilage plays several important roles in the way joints move and function. Joint cartilage provides lubrication, acts as a shock absorber, and helps the joint move smoothly. Joint cartilage is comprised of two substances chondrocytes (i.e. cartilage cells) and extracellular matrix (proteins such as hyaluronic acid, collagen, fibronectin, etc.).

Many conditions can lead to joint cartilage defects. In young people, the most common cause of the joint cartilage defect is an injury. For instance, a football player suffers a hard contact that injures the joint. Another example is a gymnast who repeatedly places substantial impact forces on the knee and other joints of the lower body, resulting in damage. In older people, the most common cause of joint cartilage defects is Osteoarthritis. Over time, the joint cartilage breaks down in the cartilage loses its ability to lubricate, absorb shock, and support the smooth movement of the joint. This leads to stiffness, pain, and “trick” joints, among other symptoms.

Orthopedic surgeons, rheumatologists, and other physicians have attempted to treat these conditions by injecting the damaged joint with one of the two main components of joint cartilage: extracellular matrix. Physicians inject hyaluronic acid (and sometimes related extracellular matrix proteins) to help replace and restore damaged joints. This approach can be helpful for some patients, but it is certainly not a cure.

Only recently, have researchers attempted to replace the other component of joint cartilage: chondrocytes. Specifically, researchers have focused their efforts on mesenchymal stem cells that have the ability to differentiate and become cartilage cells. Li and colleagues injected combinations of bone marrow-derived mesenchymal stem cells and hyaluronic acid into animals with experimental cartilage defects. They showed that hyaluronic acid injections alone modestly repaired the cartilage damage. However, when stem cells plus hyaluronic acid was injected, the joints were almost completely repaired. In other words, stem cells plus hyaluronic acid resulted in much greater improvement in joint cartilage damage than hyaluronic acid alone.

The authors of the study concluded that “bone marrow stem cells plus hyaluronic acid could be a better way to repair cartilage defects.” While additional work is needed, these results are extremely exciting for people who suffer from joint cartilage defects such as osteoarthritis. In the future, people who are candidates for hyaluronic acid injection treatments may instead receive a combination of hyaluronic acid plus stem cells and may enjoy an even greater benefit than hyaluronic acid treatment alone.

 

Reference: Li et al. (2018). Mesenchymal Stem Cells in Combination with Hyaluronic Acid for Articular Cartilage Defects. Scientific Reports. 2018; 8: 9900.

 

Autologous Mesenchymal Stem Cell Transplantation for Spinal Cord Injury

Autologous Mesenchymal Stem Cell Transplantation for Spinal Cord Injury

Spinal cord injury is severe neurological condition in which the major mode of transmission between the brain and the body is disrupted. When higher levels of the spinal cord are injured, for example, in the neck, the injury can be immediately fatal. Those who survived spinal cord injury are often left paralyzed and at risk for a number of comorbid conditions such as pneumonia, depression, skin ulceration infection, urinary tract infections, and pain.

If patients who sustain spinal cord injury can receive medical treatment quickly, physicians may administer glucocorticoids to help reduce swelling around the injury and preserve spinal cord function. Patients may also undergo therapeutic hypothermia (a.k.a. targeted temperature management, whole body cooling), also to help reduce inflammation and prevent scar tissue from forming around the damaged spinal cord.

After the first few days to weeks after spinal cord injury, not much can be done to change the outcome of the disease. Patients may undergo intensive physical, occupational, and speech therapy to help regain function, but more often than not the neurological deficits are mostly permanent. Hence, researchers are feverishly searching for ways to treat spinal cord injury and, by extension, prevent or reduce paralysis and other chronic complications.

Mesenchymal stem cells are an intriguing potential therapy for spinal cord injury. These cells can easily be obtained from many different tissues including bone marrow and fat among others. In animals, mesenchymal stem cells have been shown to improve changes that occur during spinal cord injury, namely the regeneration and strengthening of nerve cells in the spinal cord. Research has also shown how adipose-derived stem cells are a potential option for those with neurological conditions such as spinal cord injury.

To test this possible effect in humans, researchers collected mesenchymal stromal (stem) cells from patients with spinal cord injury in their upper back (i.e. thoracic spinal cord). Researchers then prepared and administered those cells back into the cerebrospinal fluid of the same patients. Each patient received two or three injections of approximately 1,000,000 cells per kilogram body weight. There were no adverse effects of the treatment for up to two years after injection. MRI imaging showed no abnormalities resulting from stem cell infusion. While the authors write that there were too few patients to make any firm conclusions about the efficacy of the treatment, they were strongly encouraged by the safety of the procedure. In fact, they use these results to begin a placebo-controlled clinical trial.

Reference

Satti et al. (2016). Autologous mesenchymal stromal cell transplantation for spinal cord injury: A Phase I pilot study.  International Society for Cellular Therapy, 18(4),518-522.

The Benefits of Stem Cells without the Cells

The Benefits of Stem Cells without the Cells

Most organs of the body recover from injury by generating new, healthy cells. Not every organ of the body has the same ability to form new cells, however. The skin is an example of an organ that has an amazing ability to regenerate. Liver and lung also have the ability to form new cells, but not as dramatically as skin. Kidney and heart have even less ability to repair and regenerate. On the opposite end of the spectrum from the skin is the brain, which has very little capacity to regenerate once it has been damaged or destroyed. All of these organ systems, especially those that are relatively unable to repair themselves, could theoretically benefit from stem cells.

Mesenchymal stem cells, also known as stromal cells, are multipotent stem cells derived from bone marrow, umbilical cord, placenta, or adipose (fat) tissue. These cells can become the cells that make up bone, cartilage, fat, heart, blood vessels, and even brain. Mesenchymal stem cells have shown a remarkable ability to help the body to produce new cells. Researchers are now realizing that the substances stem cells release may be more important than any new cells they may become. In other words, stem cells can directly become new healthy cells to a certain degree, but they can also release substances that dramatically increase the number of new, healthy cells.

Mesenchymal stromal stem cells release small packets called exosomes. These exosomes are filled with various substances that promote cell and tissue growth. Some of the most interesting and potentially useful substances are cytokines and micro RNA. Cytokines are the traffic cops of cellular repair, signaling certain events to take place while stopping others. Having the right cytokines in a particular area is critical for new tissue growth. The micro RNA released by stem cell exosomes is potentially even more exciting than cytokines. These tiny bits of RNA can directly affect how healthy and diseased cells behave. Micro RNA has a powerful ability to control the biological machinery inside of cells.

Exosomes exhibit a wide array of biological effects that promote the repair and growth of damaged and diseased organs. They promote the growth of skin cells and help wounds heal. Exosomes can reduce lung swelling and inflammation and even help the lung tissue heal itself (i.e. reduced pulmonary hypertension, decrease ventricular hypertrophy, and improve lung vascular remodeling). These small packets released by stem cells help prevent liver cells from dying (i.e. prevents apoptosis), promote liver cell regeneration, and slow down liver cirrhosis (i.e. fibrosis). Exosomes can also help protect the kidneys during acute injury and reduce the damage that occurs during a heart attack.

Several clinical trials are underway designed to allow these exciting developments to be used to treat patients. As the researchers state, “Extensive research and clinical trials are currently underway for the use of MSCs as regenerative agents in many diseases including spinal cord injury, multiple sclerosis, Alzheimer’s disease, liver cirrhosis and hepatitis, osteoarthritis, myocardial infarction, kidney disease, inflammatory bowel disease, diabetes mellitus, knee cartilage injuries, organ transplantation, and graft-versus-host disease.” We can reasonably expect that exosomes will be used to treat at least some of these conditions in the very near future.

 

Reference: Rani al. (2015). Mesenchymal Stem Cell-derived Extracellular Vesicles: Toward Cell-free Therapeutic Applications. Molecular Therapy. 2015 May; 23(5): 812–823.

Fighting Against Tissue Injury: Stem Cell Exosomes

Fighting Against Tissue Injury: Stem Cell Exosomes

Tissue injury is common to many human diseases. Cirrhosis results in damaged, fibrotic liver tissue. Idiopathic pulmonary fibrosis and related lung diseases cause damage to lung tissue. A heart attack damages heart tissue, just as a stroke damages brain tissue. In some cases, such as minor tissue injury, the damaged tissue can repair itself. Over time, however, tissue damage becomes too great and the organ itself can fail. For example, long-standing cirrhosis can cause liver failure.

One area of active research is to find ways to protect tissue from injury or, if an injury occurs, to help the tissue repair itself before the damage becomes permanent and irreversible. Indeed, tissue repair is one of the main focuses of regenerative medicine. Likewise, one of the most promising approaches in the field of regenerative medicine is stem cell therapy. Researchers are learning that when it comes to protecting against tissue injury and promoting tissue repair, exosomes harvested from stem cells are perhaps the most attractive potential therapeutic.

Why are stem cell exosomes so promising? Exosomes are small packets of molecules that stem cells release to help the cells around them grow and flourish. While one could inject stem cells as a treatment for diseases (and they certainly do work for that purpose) it may be more effective in some cases to inject exosomes directly. So instead of relying on the stem cells to produce exosomes once they are injected into the body, stem cells can create substantial amounts of exosomes in the laboratory. Exosomes with desired properties could be concentrated and safely injected in large quantities, resulting in a potentially more potent treatment for the disease.

Indeed, researchers have shown that extracellular vesicles (exosomes and their cousins, microvesicles) can be collected from stem cells and used to treat a variety of tissue injuries in laboratory animals.

Just a few examples of this research:

  • Exosomes from umbilical cord-derived mesenchymal stem cells were able to accelerate skin damage repair in rats who had suffered skin burns.
  • Exosomes from the same type of stem cell protected the lungs and reduced lung blood pressure in mice with pulmonary hypertension.
  • Exosomes from endothelial progenitor cells protected the kidney from damage caused by a lack of blood flow to the organ.

In this growing field of Regenerative Medicine, research is constant and building as new science evolves from stem cell studies. Researchers are closing in on the specific exosomes that may be helpful in treating human diseases caused by tissue injury.

 

Reference: Zhang et al. (2016). Focus on Extracellular Vesicles: Therapeutic Potential of Stem Cell-Derived Extracellular Vesicles. International Journal of Molecular Sciences. 2016 Feb; 17(2): 174.

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our team.

You have Successfully Subscribed!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!