Spinal cord injuries (SCI) are the most serious complication associated with spinal injuries and often result in permanent damage to the nervous system. With nearly 300,000 people in the United States living with SCI, the inability to treat these injuries has a significant impact on physical, mental, and financial health.
Additionally, while 94% of those suffering acute traumatic SCI survive initial treatment for the condition, both long-term survival and quality of life are often reduced as a result of post-injury complications. Further complicating the issue is the fact that the current standard of SCI treatment is designed only to reduce the secondary effects of injury and not directly promote healing through neuroregeneration.
Considering that mesenchymal stem cells (MSCs) are known to have anti-inflammatory properties, promote vascular regeneration, and to release neuro-nutrients, they are becoming increasingly promising as a potential treatment for SCI.
In this article, Xia et al. examine the evidence of pathophysiological changes occurring after SCI, review the underlying mechanisms of MSCs, summarize the potential application of MSCs in clinical practice, and highlight the challenges surrounding the use of MSCs in the treatment of SCI in future applications.
The goal of any SCI therapeutic treatment option is to promote rapid recovery of neurological function through a combination of medical and surgical interventions. However, to date, there are no optimal treatment strategies that allow for this goal to be met.
MSCs’ multidirectional differentiation capabilities are highly viable and known to provide structural support in SCI. In terms of using MSCs in the treatment of SCI, and specifically for their role as an anti-inflammatory agent, the most attractive aspect is their unique immunomodulatory ability.
Additionally, the goal of treatment after SCI is to repair the damaged nerve cells and restore nerve function. Studies exploring differentiation of MSCs after SCI have demonstrated spontaneously expressed neuromarkers at SCI sites and have allowed for recovery of neurological function.
The authors point out that traumatic SCI usually results in the direct destruction of blood vessels around the spinal cord which often results in ischemic necrosis and secondary injuries. Since promoting vascular recovery contributes to the recovery of motor function in patients with SCI, SCI vascular recovery is a new target for the treatment of SCI. Several studies have observed that MSCs secrete angiogenic factors that promote pericyte recruitment, a critical step in vascular maturation. The authors also report recent findings indicating that 57% of the vascular endothelial cells around the SCI of a mouse showed vascular regeneration effects after receiving MSC-EVs with an extensive vascular network formed around the injury over a period of 28 days.
Although MSCs are beneficial to the recovery of neurological function in patients with SCI, the authors call for additional research to focus on better understanding the SCI cellular mechanisms and MSC action for use in clinical practice. Additionally, Xia et al. point out that the survival rate and long-term survival of MSCs in the SCI microenvironment remain an unresolved issue.
MSCs repair SCI through anti-inflammatory effects and by promoting nerve axon regeneration and vascular regeneration. While further research is required to fully understand the mechanism underlying the effect of MSCs, the authors conclude the role of MSCs in treating SCI has been demonstrated in several clinical trials.
Source: “Mesenchymal stem cells in the treatment of spinal cord injury.”
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1141601/full.