Researchers continue to tout the potential of mesenchymal stem cells (MSCs) as an evolving approach for the repair of damaged tissue or lost cells. 

Specifically, the ability of MSCs to differentiate and secrete beneficial factors and vesicles is believed to play the most influential role in the regeneration of injured tissues and cells affected by various diseases.  


Recently, research into the regenerative potential of MSCs has focused on the extracellular vesicles (EVs) secreted by MSCs as an emerging and potential non-cellular therapeutic approach for healing or repairing injured or damaged tissue.  

MSC-derived EVs (MSC-EVs), or cell-free therapies, in contrast to treatments based on whole cells, are easier to manage and safer due to lower amounts of membrane-bound proteins such as MHC molecules and their inability to directly form tumors.

In this review, Keshtkar et al. discuss and describe the extracellular vesicles released by MSCs and their therapeutic potential for addressing different disease models.

These EVs are membrane-packed vesicles that are secreted by a variety of cell types and found in a variety of physiological fluids. In addition to MSCs, EVs are also secreted by T cells, B cells, dendritic cells, platelets, mast cells, epithelial cells, endothelial cells, neuronal cells, cancerous cells, and embryonic cells. EVs are also found in urine, blood, breast milk, saliva, cerebrospinal fluid, synovial fluid, and amniotic fluid.

EVs have repeatedly demonstrated that they perform an important role in cell-to-cell communication and have been implicated in a number of important processes, including the immune response, homeostasis maintenance, coagulation, and inflammation. 

Several studies have explored the use of MSC- EVs as therapeutic treatment options for kidney disease, liver disease, cardiovascular disease, and neurological disease. The authors of this review report the beneficial therapeutic effects of MSC-EVs in each of the disease models listed above, which include a significant reduction in inflammation, improved angiogenesis, reduced oxidative stress, the suppression of fibrosis, and increased cell proliferation.

Keshtkar et al. conclude that EVs can be easily isolated from MSCs of various origins and can be transferred to target cells to introduce therapeutic effects that include the regeneration of tissue and suppression of inflammation. Additionally, the authors point out that EVs could be an effective, safe therapeutic option.  

Considering the potential therapeutic benefits of MSC-EV regenerative therapy, the authors suggest standardizing methods for EV isolation, characterization, and administration as ways to provide safe, effective, and powerful new therapies based on MSC-EVs.

Source: “Mesenchymal stem cell-derived extracellular vesicles – NCBI.” 9 Mar. 2018, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5845209/

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our team.

You have Successfully Subscribed!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!