Wharton’s Jelly Mesenchymal Stem Cells May Provide a Unique Treatment Option for Patients with Chronic Obstructive Pulmonary Disorder (COPD)

Wharton’s Jelly Mesenchymal Stem Cells May Provide a Unique Treatment Option for Patients with Chronic Obstructive Pulmonary Disorder (COPD)

A recent review published in the International Journal of Molecular Sciences covers evidence demonstrating that Wharton’s jelly mesenchymal stem cells show promise for treating chronic obstructive pulmonary disease (COPD). After analyzing the literature on how stem cells may be applied in COPD treatment, the authors suggest that chronic immune-inflammatory processes are a critical component of COPD that these stem cells may be able to combat.

According to the authors of the study, several characteristics of Wharton’s jelly mesenchymal stem cells make them well suited to therapies against COPD and other immune-inflammatory diseases. These characteristics include their accessibility, their ability to expand and differentiate, and their tendency to avoid the immune reactions that often occur with other types of stem cells. These cells can come from several types of tissue, including adipose tissue, the umbilical cord, and bone marrow, and can differentiate into many different cell types.

Given the inflammatory nature of COPD, the ability of Wharton’s jelly mesenchymal stem cells to avoid serious immune reactions upon implantation may be one of the most important features of these cells. Youthful forms of these stem cells appear particularly promising, as they are agile and even less likely to cause problematic immune reactions. Intuitively, youthful stem cells are healthier in many ways because they have not undergone the biological damage that occurs with aging.

In addition to their relatively low likelihood of causing immune reactions, mesenchymal stem cells have also been shown to relieve inflammation in the airway in some studies. They have done so by producing mucus that can help minimize inflammation, by killing off cells involved in inflammation, by inhibiting the formation of problematic fibrous connective tissue, and by promoting the formation of new blood vessels.

As the reviewers note, the positive results of preclinical investigations justified the initiation of clinical trials using mesenchymal stem cells in COPD. As such, there are currently Phase I and Phase II trials underway and some that have already been completed. One completed study demonstrated the safety of using these stem cells, as no patients experienced serious adverse side effects after stem cell transplantation. The study also showed that the stem cells were associated with a reduction in an inflammatory marker, suggesting that the stem cells may, in fact, help to reduce inflammation in these patients.

Another study also demonstrated safety. It also showed functional improvement in COPD patients. These patients performed better on the breathing spirometry test after stem cell transplantation. This change in performance suggests that the pathological degeneration occurring in the lungs of those with COPD was slowed with the implantation of stem cells. These patients also experienced improved quality of life after the stem cell transplantation.

Stem Cells that Secrete Neurotrophic Factors Shown to be Safe in ALS Patients

Stem Cells that Secrete Neurotrophic Factors Shown to be Safe in ALS Patients

Amyotrophic lateral sclerosis, known as ALS, is only partially understood, and there is no effective prevention or treatment of the disease. Those who are diagnosed with ALS, therefore, have few options for slowing its progression. The disease attacks cells of the nervous system called motor neurons. Thus, while one option for approaching ALS is to prevent the attack of motor neurons, another approach is to find a way to protect those cells of the nervous system.

Small proteins called neurotrophic factors have previously been shown to help motor neurons grow and survive longer. However, when scientists have tried to apply these neurotrophic factors in ALS patients, they have not made a difference in disease progression. Because stem cells offer a way to replace damaged cells, they are studied as potential candidates for therapeutic interventions in neurodegenerative diseases, such as ALS.

In this study, scientists combined stem cells and neurotrophic factors by inducing mesenchymal stem cells to secrete neurotrophic factors. Their main objective was to determine if injecting this type of stem cell into ALS patients is safe. They also aimed to determine if such cells may be clinically helpful for this group of patients.

The scientists gave 6 patients each the stem cells through two different types of injections. They then gave 14 patients a combination of the two types of injections. All patients were between the ages of 20 and 75 and were in the early stages of ALS. The patients were observed for 6 months following their injections. Any side effects that occurred as a result of the stem cell injections were mild or transient, so each of the techniques for administering the stem cells to ALS patients was deemed safe.

The researchers also used a test called the ALS-Functional Rating Scale-Revised to evaluate the clinical impact of the stem cell treatment on ALS patients. They found that 13 of the patients (or 87%) improved in their performance on the test, suggesting that the stem cells may have improved ALS symptoms. Further research will need to be conducted to determine if these mesenchymal stem cells that secrete neurotrophic factors can indeed help ALS patients – and if so, how they can best be used to combat the disease.

Researchers Propose Nomenclature to Facilitate Our Understanding of Wharton’s Jelly

Researchers Propose Nomenclature to Facilitate Our Understanding of Wharton’s Jelly

Wharton’s jelly is a rich source of stem cells, but some researchers believe its value is sometimes unappreciated. A recent review published in Stem Cells Translational Medicine synthesized an abundance of information on what is known about Wharton’s jelly. Because scientists often use inconsistent language to discuss observations and research results pertaining to Wharton’s jelly, the authors also proposed a nomenclature to help improve transparency related to methods and findings that involve Wharton’s jelly.

According to the authors, there are a number of advantages of stem cells that come from Wharton’s jelly that are making it a popular source of these cells. One critical benefit is the noninvasive nature of the stem cell collection. Because Wharton’s jelly is collected from tissue that would otherwise be discarded after the delivery of a baby, collecting the stem cells does not require its own invasive procedure.

Another apparent benefit of Wharton’s jelly is its therapeutic efficacy. Because basic science studies have demonstrated the potential for Wharton’s jelly-derived mesenchymal stromal cells to outperform other stem cell types in their ability to treat disease, these cells are now being tested in a number of clinical trials.

For progress to be made with Wharton’s jelly-derived stem cells, it is important that researchers have a common language with which to talk about the human umbilical cord, which is the source of these cells. While this connective tissue is simpler than other types of connective tissue, it is still unclear how to differentiate the different types of cells that come from Wharton’s jelly. More precise language and definitions should help overcome this problem.

New Study Helps Explain Why Stem Cells May Prevent Lung Damage in Patients with Chronic Obstructive Pulmonary Disease (COPD)

New Study Helps Explain Why Stem Cells May Prevent Lung Damage in Patients with Chronic Obstructive Pulmonary Disease (COPD)

Chronic Obstructive Pulmonary Disease (COPD) is one of a long list of diseases that may be impacted by stem cells. A number of studies have suggested that mesenchymal stem cells may protect against the lung damage associated with COPD, but they have not been able to explain how the cells may achieve such protection.

Understanding the mechanism by which stem cells offer therapeutic value is critical for developing effective therapies that can help patients. As such, researchers from London and Hong Kong undertook a collaborative study to investigate how stem cells may protect the lungs of those with COPD. Their results were recently published in the Journal of Allergy and Clinical Immunology.

The researchers hypothesized that stem cells may work by reducing the damage that mitochondria endure in COPD. Mitochondria are the cell’s energy source and are damaged through a process known as oxidative stress, which occurs when the cells are exposed to free radicals. In COPD, when oxidative stress damages mitochondria, the lungs often become inflamed, resulting in the death of lung cells.

To test their hypothesis, the scientists looked at the effect of induced pluripotent stem cell-derived mesenchymal stem cells on airway smooth muscle cells. Consistent with their hypothesis, they found that the presence of the stem cells reduced mitochondrial damage caused by oxidative stress. The stem cells also reduced the amount of cellular death.

While more research is needed to determine how exactly stem cells can be used to treat patients with COPD, the finding that stem cells can prevent damage to lung tissue is promising. Now that researchers have also helped clarify how these cells are able to prevent such damage, they are equipped with information that could help them optimize any cell-based therapies that are developed for COPD.

A Review of the Value of Wharton’s Jelly Derived Mesenchymal Stem Cells

A Review of the Value of Wharton’s Jelly Derived Mesenchymal Stem Cells

A recent publication in BioMed Research International has reviewed the study on the potential benefits of Wharton’s jelly derived mesenchymal stem cells in treating a variety of diseases. According to the authors of the review, these stem cells can be collected during millions of births each year at the time of delivery. A huge advantage of this type of stem cell collection over other methods is that it is not associated with the adverse side effects associated with other collection methods, nor is it particularly invasive. Its collection is also highly efficient.

Other advantages of Wharton’s jelly derived mesenchymal stem cells are that collecting them does not raise ethical concerns and that the cells themselves proliferate rapidly. Some stem cells have a tendency to lead to tumors or are prone to cause immune reactions. Wharton’s jelly derived stem cells on the other hand appear to circumvent both of these problems, making them valuable for a variety of applications in medicine.

Mesenchymal stem cells, which are the basis for a number of stem cell therapies and the relevant research, may be limited in value when they have been collected from older patients. Some reasons for this limitation are disease, DNA damage, and oxidative stress.

The authors also provide information on the regulatory and logistics aspects to stem cells. They explain that quality management systems are already part of the stem cell therapy infrastructure, which ensures that Wharton’s jelly derived mesenchymal stem cells would be donated, processed, stored, and distributed with the same high standards that other stem cells undergo donation, processing, storage, and distribution. The same is also true, they say, for the procurement and testing of these stem cells. While there seem to be clear benefits of Wharton’s jelly derived stem cells, more research on the clinical applications of these cells will help researchers determine the overall value of these cells.

Learn more about the benefits of stem cell therapy here.

Hyperbaric Oxygen Shown to Mobilize Stem Cells

Hyperbaric Oxygen Shown to Mobilize Stem Cells

In recent years, research into how stem cells can be used to improve heart health has been growing. Stem cells appear to be particularly promising for helping to repair damage to the heart because stem cells can help to rebuild tissue that has been injured or destroyed.

As it becomes more and more clear that stem cells offer therapeutic options, it also becomes more important to understand how stem cells work so that therapies can be strategically developed and optimized. A recent study helped to clarify how certain stem cells can be mobilized.

The researchers hypothesized that hyperbaric oxygen would mobilize bone marrow-derived stem/progenitor cells through a nitric oxide-dependent mechanism. Nitric oxide is known to have a role in mobilizing bone marrow-derived stem/progenitor cells through the release of a cytokine. The researchers’ hypothesis stemmed from the fact that hyperbaric oxygen can activate the protein that makes nitric oxide.

Data from the study showed that hyperbaric oxygen did indeed mobilize bone marrow-derived stem/progenitor cells. They also found that the number of bone marrow-derived stem/progenitor cells in patients’ blood was higher during hyperbaric oxygen treatments. However, exposure to radiation limited the response to hyperbaric oxygen.

Interestingly, some of the researchers’ clinical data were inconsistent with the results of their basic science studies. Thus, further research is needed to fully understand the best ways to mobilize stem cells and improve their likelihood of being therapeutically valuable.

To learn more about Hyperbaric Oxygen therapy, click here.

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our team.

You have Successfully Subscribed!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!