Studies Show Promise for Stem Cell Treatment of Kidney Disease

Studies Show Promise for Stem Cell Treatment of Kidney Disease

Dr. Xun Zhu and colleagues in Rochestor, Minnesota recently reviewed the medical research that suggests that stem cells can be useful for treating kidney disease. In their review, they focused on the value of mesenchymal stem cells (MSCs), which are a type of stem cell that can turn into a number of different cell types, including bone cells, muscle cells, fat cells, and cartilage cells. MSCs have become a popular type of stem cell for therapeutic purposes for several reasons. First, they can be collected in large numbers with relative ease from places like fat tissue or bone marrow. Second, they fight inflammation, thereby reducing problematic symptoms associated with a number of diseases and conditions. Finally, MSCs seem to work along a number of different pathways that contribute to disease.

In their review, Zhu and colleagues discussed how MSCs are promising specifically within the realm of kidney disease. Both acute kidney ischemia and chronic ischemic kidney disease may be improved with MSCs and currently lack other highly effective treatment options. In addition to their anti-inflammatory properties, which can both protect and repair the kidney, MSCs also seem able to repair the kidney by releasing chemicals called cytokines. Cytokines are cells that are normally secreted by the immune system and impact other cells in ways that are important for healthy functioning.

Pre-clinical research into how MSCs may be used to address kidney disease has been promising. For instance, in a study where rat kidney transplants were being rejected by the rats’ immune systems, MSCs helped reduce the inflammation caused by the immune systems’ reactions. Similarly, in a phase II clinical trial, MSCs reduced the incidence of kidney transplant rejection in human patients. In a separate phase I clinical trial, patients who had undergone heart surgery were given injections of MSCs derived from bone marrow and as a result, were 20% less likely to suffer from acute kidney ischemia postoperatively. Further, the length of hospital stays and the readmissions rates were reduced in this group by 40%.

Researchers have also begun to consider the impact of MSCs on diabetic nephropathy, a progressive disease of the kidney that can occur in diabetes patients. Their pre-clinical studies have shown that MSCs can minimize diabetic nephropathy in rats by lowering inflammation.

The work compiled by Zhu and colleagues demonstrates that significant value that MSCs bring to treating several forms of kidney disease. Going forward, researchers will aim to determine the best route of MSC delivery for each type of disease and how long the effect of MSCs can last.

To learn more about how stem cells could help those with Diabetic kidney disease, click here.

 

Reference

Zhu, X.Y., Lerhman, A., & Lerman, L.O.  (2013). Concise review: Mesenchymal stem cell treatment for ischemic kidney dissease. Stem Cells, 31, 1731-1736.

Researchers Learning to Use Stem Cells to Repair Cartilage

Researchers Learning to Use Stem Cells to Repair Cartilage

A group of Japanese researchers have just released a study that advances our understanding of how we can use a specific type of stem cells to help patients recover from cartilage damage. This group worked with a specific type of stem cell called bone marrow-derived mesenchymal stem cells (BMSCs) because these cells confer a number of advantages over other types of stem cells that have been used to repair cartilage. Though one particular type of stem cells, called autologous chondrocytes, have been implanted over 20,000 times for therapeutic reasons, these cells are associated with long and arduous surgeries because it is difficult to harvest the required cartilage and periosteum. Another type of stem cell, referred to as suspended cultured chondrocytes, on the other hand, have the potential to result in leakage, with an uneven distribution of cells throughout the site.

Unlike these other stem cell options, BMSCs can be easily harvest through methods that are relatively minimally invasive. The team in Japan also believes that BMSC implantation is safe, as they observed no tumors or infections in the more than 6-year follow-up period of their study. Nonetheless, previous work with BMSC showed that the cells did not lead to the generation of cartilage that was sufficient to replace old cartilage. To overcome that problem, these scientists decided to explore ways to provide large numbers of cells over a short period of time. Because BMSC from humans lose their ability to differentiate into different types of cells after having traveled long distances, the researchers believed that injecting cells directly into the injury site would improve the chances that good cartilage would develop. In addition, adding a specific agent, called, fibroblast growth factor (FGF-2) could help the cells proliferate.

In this study, the researchers tested these ideas to help determine the ideal conditions for transplanting BMSCs for cartilage repair. They found that their method of transplantation led to better cartilage development than was seen in controls, with rats receiving BMSC treated with FGF-2 directly into the area with cartilage injury having higher Wakitani scores. Wakitani scores are used to assess the regeneration of cartilage tissue and how well the new tissue is integrated into the surrounding tissue.

Given that many cartilage defects do not tend to repair themselves and can often lead to osteoarthritis, it is important to find effective ways to regenerate cartilage. There are a number of limitations to the current therapies, but this study demonstrates how our tools for cartilage repair are progressing and the promise of stem cells to help rebuild defective cartilage.

Learn more about using stem cells for orthopedics here.

Reference

Itokazu et al. (2016). Transplantation of scaffold-free cartilage-like cell-sheets made from human bone marrow mesenchymal stem cells for cartilage repair. Cartilage, 7(4), 361-372.

Study Shows Stem Cells Helping with Progressive Supranuclear Palsy (PSP)

Study Shows Stem Cells Helping with Progressive Supranuclear Palsy (PSP)

Research has pointed strongly toward autologous adipose tissue-derived mesencymal stem cells (AdMSC‘s) as a treatment option for a number of neurological diseases. There is growing evidence that these cells can successfully differentiate into neurons in the brain, thereby protecting the brain against certain diseases of the central nervous system. Adipose tissue is particularly attractive when seeking to use mesenchymal stem cells (MSC’s) because it is easy to retrieve MSCs in this type of tissue. Now, a case study published in the Journal of Medical Case Reports demonstrates how AdMSC‘s were successfully used to treat a patient suffering from progressive supranuclear palsy (PSP), a disorder closely related to Parkinson’s disease.

There are currently no good treatment options for PSP. Dopaminergic drugs that are used for Parkinson’s disease are often implemented with PSP patients because of clinical similarities in these diseases. However, the benefits are both minor and short-lived. As described in this case report, researchers successfully used a novel form of therapy on a 71-year old South Korean man with PSP.

The man was examined before his treatment and continually for six months afterwards. The AdMSC protocol improved the patient’s performance on the Progressive Supranuclear Palsy Rating Scale (PSPRS) and improved both his cognitive performance and his ability to conduct daily activities. In addition to the treatment’s efficacy, it also bore limited safety concerns, as mild fever and short-term elevated blood pressure were the only adverse side affects observed with the procedure.

The patient underwent four intrathecal and five intravenous infusions infusions of AdMSC’s to increase the chances of clinical efficacy. Specifically, the strategy of the intrathecal infusions was to increase the likelihood of getting the AdMSC’s into the central nervous system. However, because the intrathecal cavity is narrow, the dosage that can be achieved through this route is limited. Thus, intravenous injections were administered as a way to increase the dosage amount. Though this success of AdMSC’s administration in PSP is just the beginning, it represents great potential for the use of stem cells in this rare but deadly disorder.

To learn more about the safety of adipose stem cell procedure, click here.

 

Reference

Choi, S.W., Park, K.B., Woo, S.K., Kang, S.K., & Ra, J.C. (2014). Treatment of progressive supranuclear palsy with autologous adipose tissue-derived mesenchymal stem cells: a case report. Journal of Medical Case Reports, 8(87), 1-5.

Stem Cells and Hyperbaric Oxygen Treatment Helping with Traumatic Brain Injury

Stem Cells and Hyperbaric Oxygen Treatment Helping with Traumatic Brain Injury

Both Hyperbaric Oxygen (HBO) treatment and Mesenchymal Stem Cells (MSC‘s) have been used as interventions for patients suffering from Traumatic Brain Injury (TBI). Though each of these therapeutic approaches can confer benefits to patients, researchers have shown that combining the two techniques can yield better results for this population of patients than either method can achieve alone. The scientists published their findings in Neural Regeneration Research earlier this year.

The transplantation of MSC‘s and the use of HBO are each effective in treating TBI for different reasons. Mesenchymal stem cells can proliferate rapidly, differentiate into many different types of cells, and do not tend to cause adverse immune reactions. While HBO treatment can enhance the brain’s aerobic metabolism, providing brain tissue with more oxygen. All of these effects are helpful after TBI has occurred. However, MSC‘s alone can be limiting in their therapeutic potential because only a fraction of those that are transplanted differentiate into mature brain cells. Because hyperbaric oxygen treatment both protects injured tissue and also supports the differentiation and migration of MSC‘s, researchers hypothesized that combining the therapies would improve lead to better neurological and cognitive outcomes following TBI than either treatment would alone.

To test their idea, the scientists induced TBI in rats to establish a rat model of the condition. They then treated one group of rats with just HBO, transplanted MSC‘s in another group of rats that did not undergo HBO, and used both interventions in a final group of rats. The researchers then looked both at physiological markers associated with TBI, as well as cognitive performance on a learning and memory task.

The results showed that rats that underwent both MSC‘s transplantation and HBO had better neurological outcomes and better cognitive performance scores than rats that endured only one type of treatment. Given these promising findings in an animal model of TBI, future research will likely address the translatability of these findings to humans. Now that a proof-of-concept exercise has been successful, there is significant support for the potential of this combination treatment regimen to help people who experience TBI.

 

 

Reference

Zhou, H. X., Liu, Z. G., Liu, X. J., & Chen, Q. X. (2016). Umbilical cord-derived mesenchymal stem cell transplantation combined with hyperbaric oxygen treatment for repair of traumatic brain injury. Neural Regen Res, 11(1), 107-113. doi: 10.4103/1673-5374.175054

Treating Brain Disorders with Stem Cells

Treating Brain Disorders with Stem Cells

Scientists have identified a new way to treat disorders of the brain using stem cells. Their proposed technique is particularly promising because of the ability of stem cells to cross the blood brain barrier, a barrier that has posed challenges for other drug candidates.

A recent review published by Rutgers University’s Pranela Rameshwar and colleagues supports the notion that stem cells, and particularly, mesenchymal stem cells (or MSCs) may be great drug delivery vehicles for people with neurological diseases such as Alzheimer’s disease, Parkinson’s disease, traumatic brain injury, and certain forms of brain cancer. Therapies that are currently used suffer a number of limitations that could potentially be overcome by stem cell delivery of drugs.

Not only are several drug substances unable to cross the blood brain barrier, but drugs can also have unwanted toxic effects because it is difficult to specifically target their action to the areas where they are needed. Stem cells can help ensure that drugs are delivered specifically to the brain, and perhaps even to the specific parts of the brain where the drug could be helpful. The use of stem cells could also circumvent the need to perform highly invasive surgical procedures to address neurological diseases.

Though different types of stem cells could theoretically be used to deliver therapies to the brain, mesenchymal stem cells appear highly valuable because research has shown them to be safe. Unlike other forms of stem cells, MSCs do not tend to form tumors and also preferentially migrate to parts of the brain in need of new tissue. An additional advantage of MSCs is that their use is not subject to the same ethical scrutiny as some other stem cells. Now that the therapeutic potential for MSCs has been identified, relevant research efforts will undoubtedly increase, with the hopes of translating this promising therapeutic approach into practice.

Learn about the use of adipose stem cells to treat brain injury here.

 

Reference
Aleynik, A., Gernavage, K. M., Mourad, Y., Sherman, L. S., Liu, K., Gubenko, Y. A., & Rameshwar, P. (2014). Stem cell delivery of therapies for brain disorders. Clin Transl Med, 3, 24. doi: 10.1186/2001-1326-3-24

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our team.

You have Successfully Subscribed!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!