Neural Progenitors Derived from Bone Mesenchymal Stem Cells Help Multiple Sclerosis Patients

Neural Progenitors Derived from Bone Mesenchymal Stem Cells Help Multiple Sclerosis Patients

Multiple Sclerosis is a disease of the nervous system that involves the demyelination of nerve cells. As nerve cells lose their myelination, it becomes harder for the cells to communicate with one another. Though there are a number of treatment options for multiple sclerosis, which usually involve immunosuppressants, the conventional treatments do not always work over the long-term and may be associated with unwanted side effects. Given the promising results of stem cells being used in treatments for other nervous system diseases, scientists have reasoned that stem cells could provide a valuable therapy for those with multiple sclerosis.

A recent study published in Cytotherapy has demonstrated for the first time the use of neural progenitors derived from bone marrow mesenchymal stem cells. According to the authors of the study, it has previously been recognized that these cells have the potential to help with multiple sclerosis therapy, whether they come from multiple sclerosis patients or those without multiple sclerosis. Preclinical research has also shown that the use of these stem cells can improve disease in multiple sclerosis models and lead to the recruitment of progenitors to sites of inflammation.

In the current study, scientists wanted to establish the safety and dosing of intrathecal neural progenitors derived from bone marrow mesenchymal stem cells in the treatment of multiple sclerosis and investigated the use of these cells in six patients with progressive multiple sclerosis who were not responding to conventional treatments. The patients were treated with between 2 and 5 injections of the stem cells, and they were evaluated for an average of 7.4 years following their first injection.

Not only were there no safety issues that arose with any of the treated patients, but 4 of the 6 patients demonstrated measurable clinical improvement through the use of stem cell treatment. The results of this pilot study provide support for both the tolerability and effectiveness of stem cell therapy for multiple sclerosis. Future research will help to clarify the specific protocols that may be used to achieve the desired results in this group of patients.

 

 

Reference: Harris, VK, Vyshkina, T, & Sadaiq, SA. (2016). Clinical safety of intrathecal administration of mesenchymal cell-derived neural progenitors in multiple sclerosis. Cytotherapy, 18(12), 1476-1482.

The Role of Exercise in MS Management

The Role of Exercise in MS Management

Multiple sclerosis (MS) is a chronic inflammatory condition of the central nervous system. The disorder produces a broad range of symptoms, including fatigue and poor muscle coordination, which can make exercise daunting. Yet, research shows that in addition to prescription-based approaches, complementary therapies such as exercise may help to alleviate symptoms and minimize the risk of secondary conditions. Discover more about the relationship between exercise and MS below.

How Does Exercise Help MS?

Exercise has been shown to improve a number of MS symptoms. In addition to promoting better overall health, embarking on an aerobic fitness routine has helped people with MS improve strength and cardiovascular fitness, maintain better bladder and bowel function, and reduce fatigue and depression. Additionally, exercise program participants have reported a more positive attitude and increased social activity.

What’s the Best Type of Exercise for MS?

While light to moderate activity can help to control MS symptoms, any activity that’s too strenuous can have the opposite effect, exacerbating issues like fatigue and increased risk for injury. It’s, therefore, a good idea to work with a professional, such as a physical therapist, before beginning any new exercise routine.

Light activities like gardening, low-impact aerobic exercises, stretching, and progressive strength training are well-suited for many people with MS. Additionally, water-based exercises are especially ideal. Water provides buoyancy, enabling participants to move in ways they may not be able to on land while eliminating the risk of fall injuries. Plus, accessories like flotation vests and pool noodles can be implemented to maintain safety. Finally, the water keeps participants cool, thereby reducing the risk of overheating which can cause MS symptoms to flare.

If you’re interested in pursuing a fitness program to help manage your MS symptoms, be sure to work with your care providers to find an approach that will best suit you.

Umbilical Cord Mesenchymal Stem Cells Show Promise in the Treatment of Multiple Sclerosis

Umbilical Cord Mesenchymal Stem Cells Show Promise in the Treatment of Multiple Sclerosis

A new study has shown that a protocol for treating Multiple Sclerosis with stem cells is safe. According to the researchers, the potential for using stem cells in Multiple Sclerosis therapy warrants further investigation. The results of the study were published in the Journal of Translational Medicine.

Stem cells – and specifically, mesenchymal stem cells, have been increasingly used in the treatment of immune and inflammatory conditions. Based on the success that has been seen in these areas, scientists reasoned that mesenchymal stem cells may also represent a useful approach to treat Multiple Sclerosis, a neurological disease that involves the abnormal attack by the immune system on the myelin sheath that insulates nerves and allows nerve cells to communicate effectively and efficiently with one another.

To test this idea, the scientists used umbilical cord mesenchymal stem cells in 20 Multiple Sclerosis patients. The patients were given intravenous injections of the stem cells each day for seven days. The researchers evaluated the patients – with both neurological testing and nervous system imaging – at baseline, one month after treatment, and one year after treatment. The researchers found that the stem cell treatment improved neurological scores in patients and that lesions in the brain and cervical spinal cord were inactive one year after the stem cell injections. There were no serious adverse side effects associated with the treatment.

Based on these findings, it is possible that stem cells will provide a useful treatment option for those with Multiple Sclerosis. With more research, we will better understand exactly how stem cells can be used to help this population of patients.

 

Reference: Riordan, N.H. et al. (2018). Clinical feasibility of umbilical cord tissue-derived mesenchymal stem cells in the treatment of multiple sclerosis. Journal of Translational Medicine, 16(57), 1-12.

Cannabinoids (CBD) Help Patients with Hard to Treat Muscle Spasticity From Multiple Sclerosis

Cannabinoids (CBD) Help Patients with Hard to Treat Muscle Spasticity From Multiple Sclerosis

Four out of five people with multiple sclerosis experience muscle spasticity. Muscle spasticity causes increased muscle tone, uncontrollable muscle contractions, and spasms. Like severe muscle cramps, muscle spasticity can be quite painful and is one of the most troubling symptoms of multiple sclerosis. Despite being so common and so troublesome, multiple sclerosis patients with muscle spasticity have few effective treatments options. In many cases, the muscle spasticity continues even after treatment with drugs such as baclofen or tizanidine. Not only are these drugs largely ineffective, in many cases they cause substantial side effects.

Marijuana has long been known to exert a muscle relaxing (anti-spasmodic) effect. As medical marijuana is becoming legal in more jurisdictions, researchers are now carefully studying the effects of the substances within marijuana. One important example is a study conducted by Spanish researchers. In 2010, Spanish drug authorities approved the use of an oral spray that contains a combination of delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), two active substances found in marijuana (Cannabis sativa). Spanish authorities approved the use of this drug for multiple sclerosis patients with moderate to severe muscle spasticity who did not benefit from other antispasmodic drugs.

Dr. Lorente Fernández and other Spanish researchers were interested in learning whether this combination of THC and CBD was able to help multiple sclerosis patients with severe muscle spasticity. The scientists found that the combination of substances found in medical marijuana was effective in 80% of patients they examined. What is striking about this finding is that every patient included in this study had failed to find relief from other medical treatments of spasticity. In other words, they had difficulty in treating muscle spasticity. When viewed in those terms, an 80% effectiveness rate is extremely impressive.

Some patients withdrew from treatment because they felt that THC/CBD did not help them within the first 30 days of starting treatment or some experienced dizziness or weakness.

Muscle spasticity is one of the most common, most troubling, and most difficult to treat symptoms of multiple sclerosis. While traditional medical treatments often fail, the substances in medical marijuana may offer hope. This study illustrates that 4 out of 5 multiple sclerosis patients with difficult to treat muscle spasticity achieved relief from a combination of THC and CBD, substances found in medical marijuana.

Visit our website for available hemp extract products. Click here

 

Reference: Lorente Fernández et al. (2014). Clinical experiences with cannabinoids in spasticity management in multiple sclerosis. Neurologia. 2014 Jun;29(5):257-60.

Mesenchymal Stromal Cells Shown to be Safe in Multiple Sclerosis

Mesenchymal Stromal Cells Shown to be Safe in Multiple Sclerosis

Of all conditions that affect the central nervous system, Multiple Sclerosis (MS) is the most common in young adults. The severity of multiple sclerosis varies considerably and can affect almost every organ system in the body affecting eyesight, bowel function, bladder function, and sexual function. Multiple sclerosis may cause cognitive problems, depression, seizures, fatigue, and pain. Most people with multiple sclerosis will have a relapsing-remitting course, which means they will have periods of relative health punctuated by flare-ups of the condition. About one out of ten people with the condition will have primary progressive multiple sclerosis, which means once the disease occurs it almost constantly causes symptoms and progresses over time.

Multiple sclerosis appears to be an inflammatory condition that affects the covering around nerves. During acute flareups/exacerbations, physicians usually prescribe a powerful steroid medication such as methylprednisolone to combat the inflammation. Patients with multiple sclerosis generally always require some sort of treatment to help manage their immune system. No fewer than 15 immune modulating treatments have been used to treat multiple sclerosis, none of which provides a cure. As such, researchers are seeking new and innovative ways to treat this potentially debilitating condition.

Researchers at the Tisch Multiple Sclerosis Research Center of New York chose to focus their research efforts on a particular type of stem cell, namely bone marrow-derived mesenchymal stromal cells. The researchers harvested these cells from the patients themselves (autologous stem cells). Then, in their laboratory, scientists used various means to prompt the cells to become neural progenitors. A neural progenitor cell is a cell that can become any of the three main types of brain cells: neurons, astrocytes, or oligodendrocytes. Incidentally, oligodendrocytes are believed to be most affected in multiple sclerosis.

Harris and co-authors at the Tisch Center enrolled six patients with progressive multiple sclerosis. These six patients had failed to find relief from other conventional multiple sclerosis treatments. The researchers provided between 2 to 5 infusions of neural progenitor cells into the spinal fluid. The multiple sclerosis patients treated with the cells tolerated the treatment very well. No serious adverse events occurred, nor were there any safety concerns during treatment. Impressively, four of the six patients—for whom no other multiple sclerosis treatment worked—had a measurable clinical improvement after stem cell treatment.

Based on the results of this clinical study, the scientists concluded that neural progenitor cells created from autologous mesenchymal stromal cells were safe to use in patients with primary progressive multiple sclerosis. Moreover, the beneficial effect witnessed in two-thirds of treated patients suggests that these cells may be able to help patients with even the most severe and difficult-to-treat forms of multiple sclerosis. Of course, additional testing is required before this treatment becomes commonplace, but the results of this first-in-human clinical study are extremely encouraging.

 

Reference: Harris et al. (2016). Clinical safety of intrathecal administration of mesenchymal stromal cell-derived neural progenitors in multiple sclerosis. Cytotherapy. 2016 Dec;18(12):1476-1482.

Hemp Extract Reduces Muscle Spasticity in Patients with Multiple Sclerosis

Hemp Extract Reduces Muscle Spasticity in Patients with Multiple Sclerosis

Multiple sclerosis (MS) is a debilitating neurological condition. MS causes nerve cells to become dysfunctional. The symptoms of multiple sclerosis vary from person to person and over time; however, one of the most common symptoms of MS is muscle spasticity. More than 80% of patients with MS have some degree of muscle spasticity.

Muscle spasticity causes increased muscle tone. Affected muscles contract even though the person is not trying to contract them. Patients may also experience uncontrollable muscle jerking and spasms. These muscle contractions can be quite painful and interfere with daily activities. In fact, about one in 20 multiple sclerosis patients with muscle spasticity are completely disabled because of it.

It can be difficult to treat muscle spasticity in patients with multiple sclerosis. Physicians may prescribe baclofen, tizanidine, or dantrolene for muscle spasticity; however, these treatments are only mildly effective and may cause troubling or serious side effects. Baclofen may cause muscle weakness, tizanidine may cause severe dry mouth, and dantrolene is toxic to the liver, for example. Researchers are continuously looking for ways to help multiple sclerosis patients to reduce muscle spasticity.

Cannabinoids are the biologically active chemicals found in the cannabis plant. Cannabinoids have been used successfully for various medical purposes. For example, these agents have been used to treat nausea caused by chemotherapy and to stimulate appetite in patients with cancer. Patients with multiple sclerosis have reported that hemp extract helps relieve symptoms. Moreover, research studies have shown cannabinoids can protect nerve cells against damage. Based on these findings, researchers conducted a clinical trial to study the effect of cannabinoids on muscle spasticity in patients with multiple sclerosis.

A total of 630 patients with multiple sclerosis and muscle spasticity received the hemp extract or placebo for 15 weeks. The researchers then performed a number of objective tests to assess muscle spasticity. Patients who received the cannabinoids had fewer symptoms and less muscle spasticity at the end of the clinical trial compared to patients taking the placebo. The greatest benefit appeared after 40 weeks of treatment. Indeed, patients felt that cannabinoids helped manage their condition. Importantly, no major safety concerns were reported.

These clinical trial results suggest long term cannabinoids treatment is safe and may help people with Multiple Sclerosis control symptoms of muscle spasticity.

Visit our website for available hemp extract products. Click here

 

Reference: Zajicek et al. (2005). Cannabinoids in multiple sclerosis (CAMS) study: safety and efficacy data for 12 months follow up.Journal of Neurology, Neurosurgery, and Psychiatry. 2005 Dec;76(12):1664-9.

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our team.

You have Successfully Subscribed!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!