Spinal cord injury (SCI) can lead to lasting health challenges, impacting motor, sensory, and autonomic functions. Recovery from such injuries is particularly difficult due to the central nervous system’s limited ability to repair itself. As a result, scientists have turned to stem cell therapies, particularly mesenchymal stem cells (MSCs), as a potential solution to help treat traumatic spinal cord injuries (TSCI).
In this review, Montoto-Meijide et al. explore the role of stem cell therapy in TSCI treatment, the safety and efficacy of MSCs, and the ongoing research aimed at improving these therapies.
Spinal Cord Injury and the Need for Effective Treatments
A spinal cord injury results from trauma that damages the spinal cord, leading to various degrees of paralysis and loss of sensory functions. Recovery is limited because the central nervous system does not regenerate easily, meaning that cells, myelin (which insulates nerve fibers), and neural connections are difficult to restore. Traditional treatments focus on alleviating symptoms and preventing further injury, but they do not offer a cure or promote regeneration. As a result, researchers are exploring stem cell therapies, which have shown potential in regenerating damaged tissues and promoting recovery.
An Overview of Mesenchymal Stem Cells (MSCs)
Stem cells are unique in that they can self-renew and differentiate into different types of cells. MSCs are a type of adult stem cell that can develop into various cell types, including bone, cartilage, muscle, and fat cells. MSCs are particularly promising in SCI treatment because of their ability to regenerate tissues and support healing. These cells have shown anti-inflammatory, anti-apoptotic (preventing cell death), and angiogenic (promoting new blood vessel growth) properties, all of which could aid in the healing of spinal cord injuries.
There are different types of stem cells, including embryonic and adult stem cells. Each source has its advantages and drawbacks. Bone marrow MSCs are the most commonly used in research and clinical trials, but adipose tissue and umbilical cord MSCs are gaining attention due to their availability and regenerative capabilities.
The Role of MSCs in Treating Spinal Cord Injuries
MSCs offer several benefits when applied to SCI treatment. They can promote tissue repair, reduce inflammation, and enhance the formation of new blood vessels. When introduced into an injured spinal cord, MSCs have been shown to:
- Promote axonal (nerve fiber) regeneration
- Reduce inflammation around the injury site
- Support the survival of nerve cells
- Enhance the formation of new blood vessels, aiding in tissue repair
These capabilities make MSCs an exciting avenue for research into TSCI treatment. Clinical trials and studies have shown that MSCs can lead to improvements in motor and sensory functions, although the extent of these improvements varies.
Clinical Evidence and Findings
A systematic review of clinical studies involving MSCs for TSCI was conducted, analyzing data from 22 studies, including 21 clinical trials. According to the authors, these findings suggest that MSC-based therapies can lead to improvements in sensory and motor functions, although these effects are often more pronounced in sensory functions than motor functions. Improvements in patients’ ASIA (American Spinal Injury Association) impairment scale grades have been reported, indicating positive outcomes for many individuals.
The safety of MSC therapies was also a key focus of these studies. Overall, MSC-based treatments were found to have a good safety profile, with no significant adverse effects such as death or tumor formation reported in clinical trials. Some studies did report mild side effects, such as temporary inflammation or mild discomfort, but these were generally short-lived and not severe.
The Future of MSC Therapy and Other Potential Treatments
MSC therapy represents one of the most promising areas of research for TSCI, but it is not the only potential treatment. Other therapies, including gene therapies, neurostimulation techniques, and tissue engineering approaches, are also being explored to address the challenges of spinal cord injury. The authors believe these approaches could complement MSC therapies or offer new avenues for healing and recovery.
For MSC therapy to become a standard treatment for TSCI, additional research is needed. Clinical trials with larger patient groups, longer follow-up periods, and standardized protocols will be necessary to better understand how MSCs can be used most effectively in treating spinal cord injuries. Additionally, researchers are exploring the best stem cell sources, optimal timing for treatment, and the ideal dosage to maximize benefits.
A Promising Future for Spinal Cord Injury Treatment
While spinal cord injuries are currently devastating and challenging to treat, stem cell therapy, particularly with MSCs, offers a hopeful future. Early studies suggest that MSCs can help promote tissue repair, reduce inflammation, and improve motor and sensory functions, although further research is needed to confirm these findings and explore long-term effects. The scientific community continues to make strides in understanding how MSCs and other therapies can help people with TSCI recover and regain functionality, offering hope for the future.
Source: Montoto-Meijide R, Meijide-Faílde R, Díaz-Prado SM, Montoto-Marqués A. Mesenchymal Stem Cell Therapy in Traumatic Spinal Cord Injury: A Systematic Review. Int J Mol Sci. 2023 Jul 20;24(14):11719. doi: 10.3390/ijms241411719. PMID: 37511478; PMCID: PMC10380897.