Treating Brain Disorders with Stem Cells

Treating Brain Disorders with Stem Cells

Scientists have identified a new way to treat disorders of the brain using stem cells. Their proposed technique is particularly promising because of the ability of stem cells to cross the blood brain barrier, a barrier that has posed challenges for other drug candidates.

A recent review published by Rutgers University’s Pranela Rameshwar and colleagues supports the notion that stem cells, and particularly, mesenchymal stem cells (or MSCs) may be great drug delivery vehicles for people with neurological diseases such as Alzheimer’s disease, Parkinson’s disease, traumatic brain injury, and certain forms of brain cancer. Therapies that are currently used suffer a number of limitations that could potentially be overcome by stem cell delivery of drugs.

Not only are several drug substances unable to cross the blood brain barrier, but drugs can also have unwanted toxic effects because it is difficult to specifically target their action to the areas where they are needed. Stem cells can help ensure that drugs are delivered specifically to the brain, and perhaps even to the specific parts of the brain where the drug could be helpful. The use of stem cells could also circumvent the need to perform highly invasive surgical procedures to address neurological diseases.

Though different types of stem cells could theoretically be used to deliver therapies to the brain, mesenchymal stem cells appear highly valuable because research has shown them to be safe. Unlike other forms of stem cells, MSCs do not tend to form tumors and also preferentially migrate to parts of the brain in need of new tissue. An additional advantage of MSCs is that their use is not subject to the same ethical scrutiny as some other stem cells. Now that the therapeutic potential for MSCs has been identified, relevant research efforts will undoubtedly increase, with the hopes of translating this promising therapeutic approach into practice.

Learn about the use of adipose stem cells to treat brain injury here.

 

Reference
Aleynik, A., Gernavage, K. M., Mourad, Y., Sherman, L. S., Liu, K., Gubenko, Y. A., & Rameshwar, P. (2014). Stem cell delivery of therapies for brain disorders. Clin Transl Med, 3, 24. doi: 10.1186/2001-1326-3-24

Stem Cells Preventing Cognitive Decline in Alzheimer’s Disease

Stem Cells Preventing Cognitive Decline in Alzheimer’s Disease

More research recently published in Brain Research titled “Intravenous transplantation of bone marrow-derived mono-nuclear cells prevents memory impairment in transgenic mouse models of Alzheimer’s disease.” shows how stem cell therapy may be a promising technique for preventing the cognitive decline associated with Alzheimer’s disease. Because of the potential for stem cell therapy to help in neurological disorders, it is already being used in clinical trials for certain afflictions, such as stroke. Here, the scientists demonstrate how the implantation of bone marrow-derived mononuclear cells (BMMC‘s) can both reduce the deposits of Amyloid-β (Amyloid beta), the protein that characterizes Alzheimer’s disease, as well as improve memory in a mouse model of the disease.

“Together, our results indicate that intravenous transplantation of BMMC‘s (bone marrow-derived mono-nuclear (stem) cells) has preventive effects against the cognitive decline in Alzheimer’s disease model mice and suggest a potential therapeutic effect of BMMC transplantation therapy.”

Amyloid beta, which is observed in the brains of those with forms of dementia including Alzheimer’s disease, has previously been shown to lead to cognitive deficits. Many attempts to develop preventions and treatments for Alzheimer’s disease have thus targeted this specific protein. However, none of these efforts have yet been clinically successful. Our growing understanding of stem cells and their therapeutic applications has opened up a promising new avenue for Alzheimer’s disease research.

The researchers chose to specifically use BMMC‘s because of their heterogeneity and because they are relatively easy to purify and do not requiring culturing. They implanted these cells in DAL mice, which have mitochondrial dysfunction similar to that observed in Alzheimer’s disease. In these mice, BMMC‘s prevented the aggregation of Amyloid beta and led mice to perform as well as normal mice in a spatial and learning and memory task. Impressively, these effects were observed even when cognitive decline had already begun in DAL mice.

This research strongly supports the idea that stem cells could help prevent the physiological and behavioral manifestations of Alzheimer’s disease. As research moves into the clinical phase, the specific ways that stem cells can aid in dealing with this devastating disease.

Learn more about stem cell therapy for Alzheimer’s disease.

 

Reference

Kanamaru, T. et al. (2015). Intravenous transplantation of bone marrow-derived mononuclear cells prevents memory impairment in transgenic mouse models of Alzheimer’s disease. Brain Research, 1605, 49-58.

 

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our team.

You have Successfully Subscribed!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!