How Stem Cell Therapy Has Revolutionized Neurodegenerative Disease Management

How Stem Cell Therapy Has Revolutionized Neurodegenerative Disease Management

Neurodegenerative diseases, which include conditions like amyotrophic lateral sclerosis (ALS), motor neuron disease, Parkinson’s disease, and multiple sclerosis (MS), are characterized by the progressive loss of structure and function of neurons. These conditions are currently considered incurable and utilize treatments focusing primarily on managing symptoms rather than addressing the root causes. However, recent advancements in regenerative medicine, also known as stem cell therapy, particularly mesenchymal stem cell (MSC) therapy, have ushered in a new era of hope and potential for managing and potentially  these debilitating conditions. 

Understanding Mesenchymal Stem Cell Therapy

Mesenchymal stem cells (MSCs) are multipotent stromal cells capable of differentiating into a variety of cell types, including bone, cartilage, and fat cells. They can be derived from various tissues, such as bone marrow, adipose tissue, and umbilical cord blood. MSCs possess remarkable immunomodulatory and anti-inflammatory properties, which make them suitable for treating a wide range of medical conditions, including neurodegenerative diseases.

MSCs secrete a range of bioactive molecules that promote neuroprotection, neurogenesis, and angiogenesis. They can migrate to sites of injury or inflammation, where they modulate the immune response and promote tissue repair. Additionally, MSCs can differentiate into neuronal cells and support the survival of existing neurons by creating a favorable microenvironment.

Mesenchymal stem cells (MSCs) offer a multifaceted approach to managing neurodegenerative conditions with their unique properties and mechanisms of action. Here is how MSCs can help in neurodegenerative conditions:

1. Immunomodulation

MSCs have potent immunomodulatory effects, which can help in neurodegenerative conditions where inflammation and immune system dysregulation play significant roles. MSCs can:

  • Reduce Inflammation: By secreting anti-inflammatory cytokines, MSCs can reduce chronic inflammation in the central nervous system (CNS), which is a hallmark of many neurodegenerative diseases.
  • Modulate Immune Response: MSCs can alter the activity of various immune cells, including T-cells, B-cells, and macrophages, promoting a more balanced immune response and preventing autoimmune attacks on neural tissues.

2. Neuroprotection

MSCs can create a supportive environment for existing neurons, protecting them from further damage. They achieve this through:

  • Secretion of Neurotrophic Factors: MSCs secrete neurotrophic factors such as brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and nerve growth factor (NGF), which support neuron survival, growth, and function.
  • Anti-apoptotic Effects: MSCs release molecules that inhibit apoptosis (programmed cell death), thereby preserving the existing neuronal population.

3. Neurogenesis and Differentiation

While MSCs themselves have limited capacity to differentiate into neurons, they can support neurogenesis indirectly:

  • Stimulation of Endogenous Stem Cells: MSCs can create a microenvironment that stimulates the body’s own neural stem cells to proliferate and differentiate into new neurons.
  • Paracrine Signaling: Through the release of various signaling molecules, MSCs can enhance the differentiation and maturation of progenitor cells into functional neurons and glial cells.

4. Tissue Repair and Regeneration

MSCs play a crucial role in repairing and regenerating damaged tissues:

  • Angiogenesis: MSCs promote the formation of new blood vessels, improving blood supply and oxygenation to damaged areas in the CNS, which is essential for tissue repair.
  • Extracellular Matrix Remodeling: MSCs secrete enzymes that remodel the extracellular matrix, facilitating tissue repair and regeneration.

5. Reduction of Oxidative Stress

Oxidative stress contributes to neuronal damage in many neurodegenerative diseases. MSCs can combat this through:

  • Antioxidant Enzyme Production: MSCs produce enzymes such as superoxide dismutase (SOD) and catalase, which help neutralize reactive oxygen species (ROS) and reduce oxidative stress.
  • Regulation of Oxidative Pathways: By modulating cellular pathways involved in oxidative stress, MSCs can protect neurons from oxidative damage.

6. Enhancement of Synaptic Connectivity

MSCs can improve neuronal communication and function by:

  • Promoting Synaptogenesis: MSCs secrete factors that encourage the formation of new synapses, enhancing neural connectivity and plasticity.

Supporting Synaptic Function: MSCs release molecules that help maintain and improve synaptic function, which is crucial for effective neural communication.

How Can Stem Cell Therapy Help Certain Neurodegenerative Conditions:

  • Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects motor neurons, leading to muscle weakness and atrophy. MSC therapy can help manage this condition by reducing inflammation and promoting the survival of motor neurons. Clinical trials have demonstrated that MSC transplantation can improve motor function and slow disease progression in ALS patients. The neuroprotective and regenerative properties of MSCs address both the symptoms and the underlying disease mechanisms, offering a potential option for those to consider.
  • Motor neuron diseases (MNDs) encompass a group of disorders characterized by the degeneration of motor neurons, leading to muscle weakness and paralysis. MSC therapy has emerged as a potential treatment for MNDs due to its ability to modulate the immune system and promote neuronal survival. Preclinical studies have shown that MSC transplantation can improve motor function and extend survival in animal models of MND. Ongoing clinical trials aim to evaluate the safety and efficacy of MSC therapy in patients with MND, offering hope for improved management and outcomes.
  • Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra, leading to motor symptoms such as tremors, rigidity, and bradykinesia. MSC therapy has shown potential in PD treatment by promoting the survival of dopaminergic neurons and modulating the immune response. Preclinical studies have demonstrated that MSC transplantation can improve motor function and reduce neuroinflammation in animal models of PD. Clinical trials are underway to assess the safety and efficacy of MSC therapy in PD patients, with promising preliminary results. If successful, MSC therapy could offer a groundbreaking new approach to managing and potentially treating Parkinson’s disease.
  • Multiple sclerosis (MS) is an autoimmune neurodegenerative disease that affects the central nervous system, leading to a wide range of neurological symptoms. MSC therapy has shown promise in the treatment of MS due to its immunomodulatory and neuroprotective properties. MSCs can help reduce the autoimmune response, promote repair of damaged neural tissues, and improve overall neurological function. Clinical trials have indicated that MSC transplantation can reduce the frequency of relapses and slow the progression of MS, providing a new avenue of hope for patients who suffer from this chronic condition.

Advantages of MSC Therapy in Neurodegenerative Diseases

One of the significant advantages of MSC therapy is its low risk of causing immune rejection. MSCs are typically autologous (derived from the patient’s own tissues) or allogeneic (derived from a donor) and possess immunomodulatory properties. The anti-inflammatory effects of MSCs can mitigate the neuroinflammation commonly seen in neurodegenerative diseases, potentially slowing disease progression. 

MSCs can also promote neurogenesis and neuroprotection, supporting the survival and function of existing neurons and enhancing overall brain health. The ability of MSCs to migrate to sites of injury or inflammation allows for targeted treatment, maximizing therapeutic benefits while minimizing potential side effects.

Case Studies and Clinical Trials

Numerous clinical trials are currently underway to evaluate the safety and efficacy of MSC therapy in various neurodegenerative diseases, including ALS, MND, PD, and MS. Early-phase trials have shown promising results, with some patients experiencing improvements in motor function and quality of life. 

Case studies highlight the potential of MSC therapy to stabilize or improve disease symptoms, offering hope for patients with limited treatment options. The success of ongoing trials will provide valuable insights into the therapeutic potential of MSCs and pave the way for larger, more definitive studies.

The Potential of Mesenchymal Stem Cell Therapy in Neurodegenerative Disease Management

Mesenchymal stem cell therapy has revolutionized the management of neurodegenerative diseases by offering a novel approach to treatment that goes beyond symptom management. The ability of MSCs to modulate the immune response, promote neuroprotection, and support neuronal survival holds immense potential for conditions such as ALS, motor neuron disease, Parkinson’s disease, and multiple sclerosis. 

The remarkable properties of mesenchymal stem cells, including their ability to differentiate, migrate to injury sites, and modulate immune responses, make them a powerful tool in the fight against neurodegenerative diseases. As research progresses and our understanding deepens, MSC therapy could become a cornerstone in the treatment of neurodegenerative conditions, providing relief and improved quality of life for millions of patients worldwide. The journey towards fully realizing the potential of MSC therapy is ongoing, but the strides made thus far are a testament to the incredible possibilities that stem cell research holds for the future of medicine.

Utilizing Mesenchymal Stem Cells as an Innovative Therapeutic Strategy for Diabetes and Pancreatic Disorders

Utilizing Mesenchymal Stem Cells as an Innovative Therapeutic Strategy for Diabetes and Pancreatic Disorders

According to the World Health Organization, an estimated 422 million people worldwide have diabetes. Numerous studies have demonstrated that people with diabetes are at an increased risk of developing both acute and chronic pancreatitis, which increases the risk of developing pancreatic cancer.  

Considering the lack of effective therapeutic options for pancreatitis and the limited treatment options for diabetes, researchers have recently turned to the potential of using mesenchymal stem cells (MSCs) as alternative therapeutic treatment options for these conditions.

In this review, Scuteri and Monfrini evaluate the different uses of MSCs for both the treatment of diabetes and the reduction of diabetes-related disease development.  

According to the authors, MSCs offer several advantages, including the ability to be isolated from different tissues in a simple way, the ability to be easily harvested and expanded in vitro, and the absence of ethical problems associated with harvesting and use.

In addition, MSCs demonstrate the ability to differentiate, release soluble factors, and migrate toward lesions and sites of inflammation. Considering that inflammation and apoptosis are significant etiopathological factors of diabetes and pancreatitis, Scuteri and Monfrini indicate that MSCs are excellent candidates for regenerative medicine purposes.

In the case of MSCs and diabetes, research has demonstrated that differentiation of MSCs into insulin-releasing cells has been demonstrated in vitro after direct contact with pancreatic islets; the release of anti-inflammatory and antioxidant factors has improved the engraftment and prolonged the survival of transplanted pancreatic islets; and inhibited the apoptotic pathways triggered by endoplasmic reticulum stress in transplanted pancreatic islets. In analyzing this research, the authors conclude that the potential exists for the safe and effective use of MSCs for treatment of diabetes.

Although there has been growing interest in exploring the potential of MSCs on pancreatitis, there have only been a few studies exploring this therapeutic option. In these studies, the presence of MSCs was observed to reduce fibrosis and parenchymal damage by reducing proinflammatory factor expression.

In regard to MSCs and pancreatic cancer, since diabetes and pancreatitis are risk factors for the development of pancreatic cancer and considering MSCs have been found to hold potential as a therapeutic option for these diseases, using MSCs to interrupt the flow of factors leading to the development of pancreatic cancer should lower the incidence of diabetes-related pancreatic cancers.

The authors conclude that MSCs are a very promising therapeutic option for the treatment of diabetes, pancreatitis, and pancreatic cancer. 

Source: “Progress in exosomes and their potential use in ocular diseases.” 18 Sep. 2020, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7459212/

Reviewing The Effectiveness of Stem Cell Therapies in Managing Neuropathic Pain

Reviewing The Effectiveness of Stem Cell Therapies in Managing Neuropathic Pain

The International Association for the Study of Pain defines neuropathic pain as “pain arising as a direct consequence of a lesion or disease affecting the somatosensory system”. While general neuropathy is diverse by nature, neuropathic lesions generally fall into four categories: focal or multifocal lesions of the peripheral system, general lesions of the peripheral nervous systems, lesions of the central nervous system, and complex neuropathic disorders. 

Although neuropathic pain is typically characterized as chronic pain, it is also considered more severe than other types of chronic pain; this is in large part due to the increased disruption to overall quality of life when compared with other chronic pain syndromes. 

As part of this review, Fortino, Pelaez, and Cheung review specific types of neuropathic pain and summarize current research being done to replace pharmacological treatments with cellular therapies, including stem cells, designed to have a longer-lasting effect on the treatment of neuropathic pain. 

Neuropathic pain presents itself in many different forms, including spontaneous sensations and superficial pain. These forms of neuropathic pain differ from nociceptive pain in that nociceptive pain occurs as a result of tissue damage while neuropathic pain is the product of damage to the peripheral or central nervous system. Neuropathic pain also differs from nociceptive pain in its proportion to the intensity of the stimuli; in other words, while nociceptive pain is proportional to the intensity of the stimuli, neuropathic pain is not.

Considering that uninjured fibers that intermingle with degenerating nerve fibers participate in pain signaling, it is important for the environment surrounding these uninjured nerve fibers to be able to protect them from degeneration and exacerbation associated with neuropathic pain. Since growth factors have proven critical in promoting neuron development and survival and since neurotrophic factors are secreted by stem cells, researchers hypothesize that stem cells present a potential therapy for longer lasting treatment of neuropathic pain.

Clinical studies have demonstrated that neurotrophic factors offered by stem cells when in direct or indirect contact with the lesioned nerve, appear to provide neuroprotection and neuroregenerative effects. 

Despite the potential for stem cell therapies to provide protection from neurodegeneration and to promote neuroregeneration, the authors raise several issues that need to be addressed, including determining an optimal dose for stem cell transplantation and obtaining a better understanding of the homing capabilities of stem cells.

In addition to exploring the benefits of neurotrophic factors of stem cells in treating neuropathic pain, transplantation of human mesenchymal stem cells (hMSCs) to explore potential benefits in treating diabetic peripheral neuropathy and spinal cord injuries are also currently being evaluated.

While the role of stem cells in the treatment of neuropathic pain is not yet fully understood, the authors find their ability to modify cellular processes to provide protective and restorative environments that can reverse the causes of neuropathic pain a promising therapy for the long-term treatment of this condition.

Source: “Concise Review: Stem Cell Therapies for Neuropathic Pain – PMC.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3667564/.

Regenerative Medicine Options for Neuropathy Pain Management

Regenerative Medicine Options for Neuropathy Pain Management

Neuropathic pain is pain caused as part of a dysfunction in the nervous system, including the peripheral nerves, brain, and spinal cord. Often characterized by spontaneous pain occurring for no specific reason, neuropathic pain can range from mild to severe and is currently estimated to affect 150 million people in the United States. The risk of experiencing neuropathic pain is also much higher in those with preexisting medical conditions, especially diabetes.

Treating neuropathic pain has proven to be very challenging and, to date, most current medical treatments are designed to mitigate pain while not addressing the underlying cause of the pain.

Spinal reorganization and changes in the excitatory or inhibitory pathways controlling neuropathic pain development following peripheral nerve injury are correlated with altered gene expression. Considering this, Siniscalco, Rossi, and Maione review newer molecular methods, including gene therapy and delivery of biologic anti-nociceptive molecules, as potential therapeutic approaches for the treatment of neuropathic pain. 

The authors also review the use of stem cell therapy as the potential to slow the progression of or even altogether block neuropathic pain. Stem cells have the ability to incorporate into the spinal cord, differentiate, and to improve locomotion recovery. Furthermore, and despite associated ethical concerns, human stem cells have demonstrated the ability to migrate to the injured area of the spinal cord and differentiate in order to promote axon regeneration and synapse regeneration as a way to alleviate neuropathic pain and improve motor behavior. 

Further exploring stem cell therapy as a potential treatment for neuropathic pain, Siniscalco et al. point out that using genetically engineered stem cells expressing trophic factors appears to be a useful tool in relieving neuropathic pain. The authors hypothesize that the benefit brought by stem cells could be a result of their ability to deliver anti-nociceptive molecules close to the pain processing centers or site of injury and that the trophic factors provided by stem cells could, themselves, act as an anti-nociceptive drug.

Of the many various types of stem cells, the authors believe that mesenchymal stem cells (MSCs) demonstrate the potential for the best results in pain-care research. Found throughout the body, MSCs demonstrate a high expansion potential, genetic stability, and stable phenotype, and are easily collected and transported.

In addition, MSCs also are able to migrate to sites of tissue injury and demonstrate strong immunosuppressive properties and are able to differentiate into neurons and astrocytes. Animal models of neurological disorders have demonstrated that MSCs are able to improve neurological deficits and to promote neuronal network improvements.

Although the underlying mechanisms of how MSCs specifically address pain behavior are yet to be fully understood, their ability to migrate to injured tissue and mediate functional recovery suggests that MSCs could modulate pain generation after a neuropathic injury. 

The authors conclude that neuropathic pain is a very complex disease that is very difficult to treat. While current treatment is designed to address the symptoms of pain, a treatment for the cause has yet to be developed. There are new molecular methods, including antisense strategy, gene therapy, and virus therapy currently being evaluated as potential therapeutic options to treat the underlying causes of pain.

Most recently, preliminary clinical evidence suggests that stem cell therapy could be the most effective long-term treatment for definitive relief of pain caused by neuropathic injury or disease.


Source: “Stem cell therapy for neuropathic pain treatment – PMC – NCBI.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3908122/.

Mesenchymal Stem Cells for Managing Spinal Cord Injuries

Mesenchymal Stem Cells for Managing Spinal Cord Injuries

Nerve damage resulting from spinal cord injury (SCI) often leads to temporary or permanent loss of function and contributes to poor quality of life. Most common among males below 30 years of age, SCI recovery has been limited specifically as a result of the low growth capacity of neurons and a lack of nerve growth factors.

While current SCI treatment focuses on stabilizing the injured area and preventing secondary injury through a combination of surgery, pharmacological intervention, and rehabilitation, the success of treatment has been limited and unable to stimulate spinal cord regeneration. 

Considering the limited success of confidential SCI treatments, several types of stem cells are currently being tested for the treatment of SCI, including mesenchymal stem cells (MSCs) isolated from bone marrow (BMSCs), umbilical cord (UC-MSCs), and adipose tissue (ADSCs).  

In this review, Liau et al. discuss the current status of MSC therapy for SCI, criteria to consider when applying MSC therapy, and review novel biological therapies that can be used together with MSC therapy to enhance its therapeutic potential.

Based on the results of clinical trials, the authors conclude that MSC therapy is beneficial for SCI patients. While not all patients responded to MSC therapy, the authors note that observed improvement varied from patient to patient. In addition to discrepancies attributed to patient variations, source of MSC, route of stem cell administration, timing of cell administration, number of cell administrations, number of cells administered, and cell preparation methods were also observed to affect the efficacy of therapy. 

Despite the delayed progress in phase III trials, there are several new therapeutic treatment strategies that incorporate stem cell secretory product-based therapy, including stem cell secretome therapy, scaffold-based therapy, and immunotherapy. The authors indicate that all of these novel therapeutic approaches may be able to be used in combination with MSC therapy to enhance the therapeutic efficacy of MSCs by improving cell survival, migration, engraftment, and proliferation.

The authors conclude this review by summarizing that, to date, MSC therapy has been demonstrated to be safe but unable to improve neurological function for all treated patients. Despite the limited success of this therapy, other studies are currently underway in an effort to improve the delivery of MSCs and MSC-derived products by utilizing scaffolds or by combining them with immunotherapy to improve the efficacy of the treatment.

Source:  “Treatment of spinal cord injury with mesenchymal stem cells – NCBI.” 22 Sep. 2020, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7510077/.

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our team.

You have Successfully Subscribed!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!