Stem Cells Shown to Reduce Noise-Induced Hearing Loss

Stem Cells Shown to Reduce Noise-Induced Hearing Loss

When cochlear cells within the ear are damaged from exposure to high levels of noise, long-term, permanent hearing loss can occur. Because this hearing loss is associated with damaged cells, researchers have reasoned that replacing those cells with stem cells may provide a means for reversing noise-induced hearing loss. A recent study, published in the journal Neurobiological Disorders has shown that the transplant of epithelial stem cells can in fact help with this type of hearing loss.

The stem cells that were used in the study were isolated from the tongue and were shown to have the ability to survive and proliferate outside the body. Once transplanted, they were also shown to survive and to integrate themselves appropriately.

The auditory brainstem response (ABR) threshold test was used before and after transplantation to determine whether the stem cells actually impacted hearing loss level. The ABR test is a neurological test that assesses whether the brainstem responds to auditory clicking sounds. The test was developed in 1971 and is now the most widely used test for evaluating responses to auditory stimuli. The test reveals the threshold at which noise can produce a response, with lower thresholds indicating better auditory functioning.

Compared to before the transplantation, tests performed 4 weeks after transplantation showed that the stem cell transplants were associated with lower ABR thresholds. Thus, not only did the stem cells survive, proliferate, and integrate normally within the ear, but they were also associated with improved auditory abilities.

These results indicate that stem cells are a promising candidate for reversing long-term hearing loss that is caused by noise-induced damage to cells of the inner ear. Further research will help to clarify the best ways these cells may be used to reverse hearing loss and to what extent their application can benefit those who have suffered noise-induced hearing loss. It is also possible that the relevant research will help reveal ways that stem cells can be used to help those who suffer from other types of hearing loss as well.

Read more about how stem cells treated with morin hydrate can protect against hearing loss here.

 

Reference

Sullivan, J.M., Cohen, M.A., Pandit, S.R., Sahota, R.S., Borecki, A.A., & Oleskevich, S. (2011). Effect of epithelial stem cell transplantation on noise-induced hearing loss in adult mice. Neurobiological Disorders. 41(2), 552-559.

Stem Cells Show Promise for Improving Female Pattern Hair Loss

Stem Cells Show Promise for Improving Female Pattern Hair Loss

Female pattern hair loss is not well understood, but a new study has helped shed light on how stem cells may be able to help treat the disorder. While both aging and family history of male or female pattern baldness can increase the likelihood of experiencing female pattern hair loss, there also appear to be hormonal contributors. Specifically, levels of male hormones, known as androgens, may change during the course of female pattern baldness.  These hormonal changes could help explain why women who have undergone menopause are more likely to experience thinning of the hair.

There is currently only one drug that is approved by the United States Food and Drug Administration to treat female pattern baldness. The drug, minoxidil, is a topical treatment applied to the scalp. Unfortunately, the drug does not always help with the symptoms of female pattern hair loss. Other treatment options involve replacing the hair through hair transplants, hair weaving, and hairpieces. Transplants can leave scarring and also have a risk of infection, as they require that tiny plugs of hair are removed where the hair is thicker and transplanting into the balding portions of the scalp. Transplants are also quite expensive.

Because of the limitations of the current options for those with female pattern hair loss, combined with the psychosocial impact of the disorder, researchers have focused attention on the potential promise of stem cells to help generate new hair as a potential therapy. In the current study, researchers focused on adipose tissue-derived stem cells in patients because these cells have been shown to lead to hair growth in conditions outside the body.

The researchers observed 27 patients with female pattern hair loss who were treated with adipose tissue-derived stem cells and saw that 12 weeks of therapy was sufficient to enhance hair growth in these patients. The stem cell therapy led to both thicker and denser hair. In other words, by using stem cell therapy, patients grew hairs that were themselves thicker and also grew more hairs overall.

In addition to the positive effects of stem cell therapy in improving the female pattern hair loss, no adverse side effects were observed. It is therefore likely that stem cells could be used more broadly to help patients with female pattern hair loss grow hair that is less conducive to the appearance of baldness. Future research will help to clarify how and to what extent stem cells can help with this particular type of baldness, as well as other balding disorders.

Learn more about five main benefits of stem cell therapy here.

 

Reference

Shin, H et al. (2015). Clinical use of conditioned media of adipose tissue-derived stem cells in female pattern hair loss: A retrospective case series study. International Journal of Dermatology, 54(6), 730-735.

New Research Clarifying How Stem Cells Help Rheumatoid Arthritis Patients

New Research Clarifying How Stem Cells Help Rheumatoid Arthritis Patients

A group of researchers in China who have recently observed positive effects of stem cells on patients with rheumatoid arthritis have now conducted an experiment that helps clarify exactly how these stem cells may contribute to improved symptoms in this particular patient population. The group uses umbilical cord stem cells, which are stem cells that have demonstrated immune regulatory functions because the immune system is implicated in rheumatoid arthritis.

Rheumatoid arthritis is characterized by inflammation and subsequent damage to the joints. The synovium is a type of connective tissue located in synovial joints like knees and elbows and is where the majority of the inflammation occurs. A specific protein, called cadherin-11 that is present in some of the cells in the lining of the synovium has been hypothesized to be an important culprit in rheumatoid arthritis because the protein can lead to inflammation and thus destruction of bones and cartilage.

The researchers decided to test whether umbilical cord stem cells may have an impact on cadherin-11, as such an impact could help explain how these cells help patients with rheumatoid arthritis. They therefore looked at fibrolast-like synoviocytes, the cells that express cadherin-11 in the lining of the synovium, in both patients with rheumatoid arthritis and patients with osteopathic arthritis. Because osteopathic arthritis does not involve the same kind of destruction to the synovium that rheumatoid arthritis does, the researchers expected to find less cadherin-11 in the fibroblast-like synoviocytes of the patients with osteopathic arthritis.

Not only did the researchers find, as suspected, that cadherin-11 levels were higher in the fibroblast-like synoviocytes of patients with rheumatoid arthritis, compared to those with osteopathic arthritis, but they also found that umbilical cord stem cells suppressed the cadherin-11 levels in the fibroblast-like synoviocytes from rheumatoid arthritis patients.

These results point to a potential mechanism by which umbilical cord stem cells reduce inflammation and improve symptoms in patients with rheumatoid arthritis. Additionally, they provide important information on how to develop treatments that will specifically target the cause of rheumatoid arthritis.

Stem cells are showing promising results for treating Rheumatoid Arthritis. Learn about it here.

 

Reference

Zhao et al. (2015). Umbilical cord-derived mesenchymal stem cells inhibit cadherin-11 expression by fibroblast-like synoviocytes in rheumatoid arthritis. Journal of Immunology Research, 2015, 1-10.

Study Shows Stem Cells Help Patients with Lyme Disease and MS

Study Shows Stem Cells Help Patients with Lyme Disease and MS

A recent case study has reported that the use of human embryonic stem cells has helped two patients: one with Lyme disease and the other with multiple sclerosis. Though Lyme disease and multiple sclerosis occur for different reasons – Lyme disease results from tick bites, whereas autoimmunity is the culprit in multiple sclerosis –  the two conditions are hard to distinguish clinically, leading to the idea that they may be able to be treated in similar ways. Both patients with Lyme disease and those with multiple sclerosis display neurological conditions such as problems with cognition, vision, sensation, and fatigue.

Traditionally, these diseases have been treated in different ways. Patients with Lyme disease are generally given antibiotics, but the antibiotics are often associated with adverse side effects or are not fully effective. Multiple sclerosis, on the other hand, is often treated with steroids and immunosuppressants, but unfortunately, the treatment regimens for multiple sclerosis often lead to a number of life threatening conditions. As progress has been made applying stem cell therapies to disorders of the nervous system, it has been theorized that stem cells may be able to help with both Lyme disease and multiple sclerosis.

In these case studies, embryonic stem cells were administered to a 30 year old woman with Lyme disease and a 42 year old man with multiple sclerosis. Following their treatment, both patients showed improvement in neurological performance related to muscle strength, cognition, coordination, and stamina. Further, the nervous system of both patients was assessed with both magnetic resonance imaging (MRI) and single photon emission computed tomography (SPECT). These imaging techniques demonstrated improvements in the brains of the patients.

That stem cells led to both functional and physiological improvements continue to support the idea that stem cells can be used to treat neurological conditions and that they can specifically support the treatment of Lyme disease and multiple sclerosis. As neither patient experienced any adverse side effects related to the stem cell therapy, it appears that there are safe options for applying stem cells in these conditions. Further research will help to clarify specific protocols that can be used to treat Lyme disease and multiple sclerosis patients with stem cells.

Learn more about how adult stem cell therapy can provide an alternative for MS patients who don’t respond to typical drug treatment here.

 

Reference

Shroff, G. (2016). Transplantation of human embryonic stem cells in patients with multiple sclerosis and Lyme disease. American Journal of Case Reports, 17, 944-949.

Stem Cells Showing Promising Results for Rheumatoid Arthritis

Stem Cells Showing Promising Results for Rheumatoid Arthritis

Specifically, the umbilical cord mesenchymal stem cells were able to inhibit the proliferation of fibrolast-like synoviocytes cells from rheumatoid arthritis patients. These fibroblast-like synoviocytes are critical components of rheumatoid arthritis. In addition, the umbilical cord mesenchymal stem cells reduced levels of cells that promote inflammation and increase the levels of those that fight inflammation.

Rheumatoid arthritis is an autoimmune disease, meaning that the immune system of those who suffer from rheumatoid arthritis starts to attack the patient’s own body because it mistakenly perceives the body’s own cells as harmful foreign agents. The disease specifically involves the T-cells of the immune system and mainly attacks synovial joints like the knees and elbows.

Stem cells have been proposed to help with the treatment of a number of diseases, including rheumatoid arthritis. Because the current approaches for treating rheumatoid arthritis are expensive and none of them lead to long-term remission, new treatment options are actively sought. There has been evidence to suggest that bone marrow mesenchymal stem cells can help with rheumatoid arthritis, but recently, researchers theorized that umbilical cord mesenchymal stem cells may have its own advantages for the use in treating the disease.

The idea for using umbilical cord mesenchymal stem cells arose because of the ability of these cells to suppress the immune system. Specifically, these cells have been shown to affect the number of active T-cells, making them an appropriate candidate for opposing the physiological basis of rheumatoid arthritis.

The current study made strides in the technical use of umbilical cord mesenchymal stem cells for treating rheumatoid arthritis and also provided evidence that these cells are particularly well-suited for this particular purpose. Specifically, the umbilical cord mesenchymal stem cells were able to inhibit the proliferation of fibrolast-like synoviocytes cells from rheumatoid arthritis patients. These fibroblast-like synoviocytes are critical components of rheumatoid arthritis. In addition, the umbilical cord mesenchymal stem cells reduced levels of cells that promote inflammation and increase the levels of those that fight inflammation. Finally, these cells also reduced the severity of the disease in a model of arthritis.

These promising results highlight the potential of umbilical cord mesenchymal stem cells in medicine – and particularly their potential to aid in the development of treatment options for rheumatoid arthritis. Further research will likely help clarify exactly how these cells can be used in the disease and to what extent they can help rheumatoid arthritis patients.

To find out more about the new research clarifying how stem cells help Rheumatoid Arthritis patients, click here.

 

Reference
Liu et al.. (2010). Therapeutic potential of human umbilical cord mesenchymal stem cells in the treatment of rheumatoid arthritis. Arthritis Research and Therapy, 12(6), R210.

Stem Cells Improving Neurological Function Following TBI

Stem Cells Improving Neurological Function Following TBI

Researchers have recently shown how a specific type of stem cell, called umbilical cord mesenchymal stem cells, can improve the neurological function of patients who have experienced traumatic brain injury (TBI). When TBI occurs, the trauma to the head leads the immune system to send cells to the area of injury. The resulting swelling often overwhelms the site of injury, which can cause significant damage to the tissue as a number of brain cells, or neurons, die. The rationale for using stem cells to treat TBI is therefore that by replacing these lost neurons, the functions that are lost as a result of TBI may be restored.

In the current study, published in the journal Brain Research, scientists studied 40 patients who had experienced TBI. Half the patients were selected to act as a control, receiving no treatment, while the other half was given 4 transplantations of umbilical cord mesenchymal stem cells through the spine. All 40 patients were evaluated both before any treatment was administered, as well as 6 months later. Specifically, each patient underwent the Fugl-Meyer Assessments (FMA), which assesses balance, motor functioning, and sensation, as well as the Functional Independence Measures (FIM), which tests both motor and cognitive functioning.

Though the control group of patients who did not receive any medical intervention did not improve in their FMA and FIM assessments over the 6 month period, the patients who received the stem cell transplants improved on both measures of functioning. In the FMA, improvements were observed in scores for upper extremity and lower extremity motor performance as well as for balance and sensation. In the FIM, a number of scores increased over the 6 month period for the treatment group, including those for self care, mobility, locomotion, communication, and social cognition.

These results demonstrate the great promise of stem cells generally – and of umbilical cord mesenchymal stem cells specifically – for the treatment of symptoms resulting from TBI. Further studies will be needed to help clarify the specific ways that these stem cells may be able to help patients who have suffered a TBI, and studies that involve multiple centers and larger sample sizes of patients are likely to occur in the future to help in the development of relevant treatments.

Both Hyperbaric Oxygen (HBO) treatment and Mesenchymal Stem Cells (MSC‘s) have been used as interventions for patients suffering from Traumatic Brain Injury (TBI). Find out more in this article.

 

Reference

Wang, S. et al. (2013). Umbilical cord mesenchymal stem cell transplantation significantly improves neurological function in patietns with sequelae of traumatic brain injury. Brain Research, 1532, 76-84.

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our team.

You have Successfully Subscribed!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!