Mesenchymal stem cells have proved to be one of the most promising stem cell types for regenerative medicine. A recent review has compiled information from studies looking specifically at how these stem cells can be used for regenerative cell therapies.
According to the authors of this review, as part of the effort to characterize mesenchymal stem cell safety and efficacy, 657 clinical trials have been initiated using this type of stem cell. The promise of these cells has led them to be used in clinical trials that aim to regenerate bone and cartilage and to treat diseases such as multiple sclerosis, Crohn’s disease, and graft-versus-host-disease.
Their utility in this spectrum of diseases demonstrates the broad potential for mesenchymal stem cells to differentiate into different types of tissue. They have become known for their ability to differentiate into bone cells. However, these cells can also wrap around blood vessels thereby stabilizing the vessels and supporting their structure. They have been shown to integrate into the outer walls of arteries and microvessels in several organs.
In addition to their differentiation potential, mesenchymal stem cells from adults also have a good proliferation rate, which is beneficial for tissue regeneration. However, the specific regenerative potential appears to depend on the specific type of tissue from which the stem cells are derived, making some stem cells more useful than others for regeneration.
Other major features of mesenchymal stem cells that make them a promising option for regenerative medicine are their ability to modulate the immune system and their anti-inflammatory characteristics. These properties allow mesenchymal stem cells to improve the treatment of autoimmune diseases that are often characterized by adverse immune reactions, including inflammation.
A newer line of research involving mesenchymal stem cells involves their potential therapeutic application for diabetes. The hope is that the beta cells that are damaged within the pancreas in diabetes could be repaired with mesenchymal stem cells. Future research will help determine the extent to which mesenchymal stem cells can be used for regenerative medicine and will help to optimize the specific treatments that employ these cells.