In a review published in Stem Cell Research & Therapy, Gupta et al. describe the latest advances in the use of bone marrow derived stem cells to treat osteoarthritis. These cells are promising because of their ability to treat the degeneration of cartilage that occurs in the disease. When connective tissue degenerates, natural regeneration is highly limited because there is not a strong presence of vasculature within that tissue. Thus, interventions to deal with the effects of osteoarthritis are needed.

Historically, non-stem cell treatments have been used in attempts to treat cartilage degeneration. Physical therapy, pharmaceuticals, and surgical interventions have all been largely employed. For mild cases of osteoarthritis, combinations of physical therapy and pharmaceuticals have been used to manage pain and minimize inflammation. Unfortunately, because the disease is progressive, this type of approach is only effective in the short-term.

Eventually, steroids or hyaluronic acid are generally used to treat osteoarthritis. The impact of these more aggressive treatments, however, is debated and does not appear to be consistent across patient populations. Once osteoarthritis reaches the advanced stage, joint replacement is the only option for relief.

The use of cell-based therapies to treat osteoarthritis is not a new idea. Cultured autologous chondrocytes have been shown to successfully treat cartilage degeneration for over 15 years. The downsides to this approach are that it is invasive, the positive effects are likely temporary, and there has not been sufficient research conducted to fully understand how well the technique works and how to optimize it.

Bone marrow derived stem cells have the potential to carry the same success rate as the cell-based therapies that have long been used to treat osteoarthritis while also overcoming the limitations of those therapies. There are several advantages of the application of bone marrow derived stem cells in the treatment of cartilage degeneration.

First, these particular cells can be easily isolated. Second, they can significantly expand in culture before being used therapeutically. Third, they have modulatory properties that enable them to reduce inflammation, which is a critical factor in cartilage degeneration. Finally, they secrete factors that have the potential to both prevent further degeneration and facilitate regeneration.

Given the number of reasons that bone derived stem cells should theoretically improve upon current methods for treating the cartilage degeneration that occurs in osteoarthritis, more research will likely be conducted to decipher whether these cells do indeed provide benefits that other treatment options do not. In the case that these cells continue to appear promising for osteoarthritis treatment, research will likely also aim at determining the best protocols for using these cells to ensure the best outcomes for osteoarthritis patients.

 

To find out more about the new alternative way to manage the symptoms of Osteoarthritis, click here.

 

Reference:

Gupta, PK, Das, AK, Chullikana, A, & Majumdar, A. (2012). Mesenchymal stem cells for cartilage repair in osteoarthritis. Stem Cell Research & Therapy, 3, 25-34.

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our team.

You have Successfully Subscribed!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!